Classical molecular dynamics investigations of biphenyl-based carbon nanomembranes

Andreas Mrugalla and Jürgen Schnack
Beilstein J. Nanotechnol. 2014, 5, 865–871. https://doi.org/10.3762/bjnano.5.98

Cite the Following Article

Classical molecular dynamics investigations of biphenyl-based carbon nanomembranes
Andreas Mrugalla and Jürgen Schnack
Beilstein J. Nanotechnol. 2014, 5, 865–871. https://doi.org/10.3762/bjnano.5.98

How to Cite

Mrugalla, A.; Schnack, J. Beilstein J. Nanotechnol. 2014, 5, 865–871. doi:10.3762/bjnano.5.98

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Stohmann, P.; Koch, S.; Yang, Y.; Kaiser, C. D.; Ehrens, J.; Schnack, J.; Biere, N.; Anselmetti, D.; Gölzhäuser, A.; Zhang, X. Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy. Beilstein journal of nanotechnology 2022, 13, 462–471. doi:10.3762/bjnano.13.39
  • Ehrens, J.; Gayk, F.; Vorndamme, P.; Heitmann, T.; Biere, N.; Anselmetti, D.; Zhang, X.; Gölzhäuser, A.; Schnack, J. Theoretical formation of carbon nanomembranes under realistic conditions using classical molecular dynamics. Physical Review B 2021, 103, 115416. doi:10.1103/physrevb.103.115416
  • Zhang, X.; Beyer, A. Mechanics of free-standing inorganic and molecular 2D materials. Nanoscale 2021, 13, 1443–1484. doi:10.1039/d0nr07606f
  • Backes, C.; Abdelkader, A. M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R.; Bellani, S.; Berger, C.; Berger, R.; Ortega, M. B.; Bernard, C.; Beton, P. H.; Beyer, A.; Bianco, A.; Bøggild, P.; Bonaccorso, F.; Barin, G. B.; Botas, C.; Bueno, R. A.; Carriazo, D.; Castellanos-Gomez, A.; Christian, M.; Ciesielski, A.; Ciuk, T.; Cole, M. T.; Coleman, J. N.; Coletti, C.; Crema, L.; Cun, H.; Dasler, D.; De Fazio, D.; Díez, N.; Drieschner, S.; Duesberg, G. S.; Fasel, R.; Feng, X.; Fina, A.; Forti, S.; Galiotis, C.; Garberoglio, G.; Garcia, J. M.; Garrido, J. A.; Gibertini, M.; Gölzhäuser, A.; Gómez, J.; Greber, T.; Hauke, F.; Hemmi, A.; Hernández-Rodríguez, I.; Hirsch, A.; Hodge, S. A.; Huttel, Y.; Jepsen, P. U.; Jimenez, I.; Kaiser, U.; Kaplas, T.; Kim, H.; Kis, A.; Papagelis, K.; Kostarelos, K.; Krajewska, A.; Lee, K.; Li, C.; Lipsanen, H.; Liscio, A.; Lohe, M. R.; Loiseau, A.; Lombardi, L.; López, M. F.; Martin, O.; Martín, C.; Martínez, L.; Martín-Gago, J. A.; Martínez, J. I.; Marzari, N.; Mayoral, A.; McManus, J. B.; Melucci, M.; Méndez, J.; Merino, C.; Merino, P.; Meyer, A.; Miniussi, E.; Miseikis, V.; Mishra, N.; Morandi, V.; Munuera, C.; Muñoz, R.; Nolan, H.; Ortolani, L.; Ott, A. K.; Palacio, I.; Palermo, V.; Parthenios, J.; Pasternak, I.; Patanè, A.; Prato, M.; Prevost, H.; Prudkovskiy, V.; Pugno, N. M.; Rojo, T.; Rossi, A.; Ruffieux, P.; Samorì, P.; Schué, L.; Setijadi, E. J.; Seyller, T.; Speranza, G.; Stampfer, C.; Stenger, I.; Strupinski, W.; Svirko, Y.; Taioli, S.; Teo, K. B. K.; Testi, M.; Tomarchio, F.; Tortello, M.; Treossi, E.; Turchanin, A.; Vázquez, E.; Villaro, E.; Whelan, P. R.; Xia, Z.; Yakimova, R.; Yang, S.; Yazdi, G. R.; Yim, C.; Yoon, D.; Zhang, X.; Zhuang, X.; Colombo, L.; Ferrari, A. C.; García-Hernández, M. Production and processing of graphene and related materials. 2D Materials 2020, 7, 022001–022282. doi:10.1088/2053-1583/ab1e0a
  • Gayk, F.; Ehrens, J.; Heitmann, T.; Vorndamme, P.; Mrugalla, A.; Schnack, J. Young's moduli of carbon materials investigated by various classical molecular dynamics schemes. Physica E: Low-dimensional Systems and Nanostructures 2018, 99, 215–219. doi:10.1016/j.physe.2018.02.009
  • Zhang, X.; Mainka, M.; Paneff, F.; Hachmeister, H.; Beyer, A.; Gölzhäuser, A.; Huser, T. R. Surface-Enhanced Raman Spectroscopy of Carbon Nanomembranes from Aromatic Self-Assembled Monolayers. Langmuir : the ACS journal of surfaces and colloids 2018, 34, 2692–2698. doi:10.1021/acs.langmuir.7b03956
  • Turchanin, A. Graphene Growth by Conversion of Aromatic Self-Assembled Monolayers. Annalen der Physik 2017, 529, 1700168. doi:10.1002/andp.201700168
  • Zhang, X.; Marschewski, E.; Penner, P.; Beyer, A.; Gölzhäuser, A. Investigation of electronic transport through ultrathin carbon nanomembrane junctions by conductive probe atomic force microscopy and eutectic Ga–In top contacts. Journal of Applied Physics 2017, 122, 055103. doi:10.1063/1.4995533
  • Turchanin, A.; Gölzhäuser, A. Carbon Nanomembranes. Advanced materials (Deerfield Beach, Fla.) 2016, 28, 6075–6103. doi:10.1002/adma.201506058
  • Penner, P.; Zhang, X.; Marschewski, E.; Behler, F.; Angelova, P.; Beyer, A.; Christoffers, J.; Gölzhäuser, A. Charge Transport through Carbon Nanomembranes. The Journal of Physical Chemistry C 2014, 118, 21687–21694. doi:10.1021/jp506689n
Other Beilstein-Institut Open Science Activities