Exploring plasmonic coupling in hole-cap arrays

Thomas M. Schmidt, Maj Frederiksen, Vladimir Bochenkov and Duncan S. Sutherland
Beilstein J. Nanotechnol. 2015, 6, 1–10. https://doi.org/10.3762/bjnano.6.1

Supporting Information

Supporting Information File 1: AFM measurements of the height from the gold film surface to the gold cap on the top the PS particle.
Format: PDF Size: 322.7 KB Download

Cite the Following Article

Exploring plasmonic coupling in hole-cap arrays
Thomas M. Schmidt, Maj Frederiksen, Vladimir Bochenkov and Duncan S. Sutherland
Beilstein J. Nanotechnol. 2015, 6, 1–10. https://doi.org/10.3762/bjnano.6.1

How to Cite

Schmidt, T. M.; Frederiksen, M.; Bochenkov, V.; Sutherland, D. S. Beilstein J. Nanotechnol. 2015, 6, 1–10. doi:10.3762/bjnano.6.1

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Xu, J.; Fu, M.; Ji, C.; Centeno, A.; Kim, D. K.; Evers, K.; Heutz, S. E. M.; Oulton, R.; Ryan, M. P.; Xie, F. Plasmonic‐Enhanced NIR‐II Downconversion Fluorescence beyond 1500 nm from Core–Shell–Shell Lanthanide Nanoparticles. Advanced Optical Materials 2023, 11. doi:10.1002/adom.202300477
  • Ahmad, A. Safety and Toxicity Implications of Multifunctional Drug Delivery Nanocarriers on Reproductive Systems In Vitro and In Vivo. Frontiers in toxicology 2022, 4, 895667. doi:10.3389/ftox.2022.895667
  • Zhang, Y.; Liao, Y.; Shou, Y.; Wu, N.; Chen, H.; Qian, H. Broadband Transparent Electrode in Visible/Near-Infrared Regions. ACS Photonics 2021, 8, 2203–2210. doi:10.1021/acsphotonics.1c00515
  • Darvill, D.; Iarossi, M.; Ekeroth, R. M. A.; Hubarevich, A.; Huang, J.-A.; De Angelis, F. Breaking the symmetry of nanosphere lithography with anisotropic plasma etching induced by temperature gradients. Nanoscale advances 2021, 3, 359–369. doi:10.1039/d0na00718h
  • Luong, H. M.; Pham, M.; Madhogaria, R. P.; Phan, M.-H.; Larsen, G. K.; Nguyen, T. D. Bilayer Plasmonic Nano-lattices for Tunable Hydrogen Sensing Platform. Nano Energy 2020, 71, 104558. doi:10.1016/j.nanoen.2020.104558
  • Thi, D. V.; Ohno, T.; Yamamoto, N.; Sannomiya, T. Field localization of hexagonal and short-range ordered plasmonic nanoholes investigated by cathodoluminescence. The Journal of chemical physics 2020, 152, 074707. doi:10.1063/1.5131698
  • Bauch, M.; Dimopoulos, T.; Trassl, S. Nanostructured, ultrathin silver-based transparent electrode with broadband near-infrared plasmonic resonance. Nanotechnology 2019, 30, 265201. doi:10.1088/1361-6528/ab0d39
  • Kang, E. S. H.; Ekinge, H.; Jonsson, M. P. Plasmonic fanoholes: on the gradual transition from suppressed to enhanced optical transmission through nanohole arrays in metal films of increasing film thickness. Optical Materials Express 2019, 9, 1404–1415. doi:10.1364/ome.9.001404
  • Hamdana, G.; Südkamp, T.; Descoins, M.; Mangelinck, D.; Caccamo, L.; Bertke, M.; Wasisto, H. S.; Bracht, H.; Peiner, E. Towards fabrication of 3D isotopically modulated vertical silicon nanowires in selective areas by nanosphere lithography. Microelectronic Engineering 2017, 179, 74–82. doi:10.1016/j.mee.2017.04.030
  • Ai, B.; Möhwald, H.; Wang, D.; Zhang, G. Advanced Colloidal Lithography Beyond Surface Patterning. Advanced Materials Interfaces 2016, 4, 1600271. doi:10.1002/admi.201600271
Other Beilstein-Institut Open Science Activities