Electron and heat transport in porphyrin-based single-molecule transistors with electro-burnt graphene electrodes

Hatef Sadeghi, Sara Sangtarash and Colin J. Lambert
Beilstein J. Nanotechnol. 2015, 6, 1413–1420. https://doi.org/10.3762/bjnano.6.146

Cite the Following Article

Electron and heat transport in porphyrin-based single-molecule transistors with electro-burnt graphene electrodes
Hatef Sadeghi, Sara Sangtarash and Colin J. Lambert
Beilstein J. Nanotechnol. 2015, 6, 1413–1420. https://doi.org/10.3762/bjnano.6.146

How to Cite

Sadeghi, H.; Sangtarash, S.; Lambert, C. J. Beilstein J. Nanotechnol. 2015, 6, 1413–1420. doi:10.3762/bjnano.6.146

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhang, J.; Qian, L.; Barin, G. B.; Daaoub, A. H. S.; Chen, P.; Müllen, K.; Sangtarash, S.; Ruffieux, P.; Fasel, R.; Sadeghi, H.; Zhang, J.; Calame, M.; Perrin, M. L. Contacting individual graphene nanoribbons using carbon nanotube electrodes. Nature electronics 2023, 6, 572–581. doi:10.1038/s41928-023-00991-3
  • Albeydani, O. Theoretical study of vertical van der Walls metal-porphyrin and metal free-porphyrin junctions. Physica Scripta 2023, 98, 85403–085403. doi:10.1088/1402-4896/ace222
  • Toscano-Negrette, R. G.; León-González, J. C.; Vinasco, J. A.; Ojeda Silva, J. H.; Morales, A. L.; Duque, C. A. Theoretical Study of Thermoelectric Properties of a Single Molecule of Diphenyl-Ether. Condensed Matter 2023, 8, 55. doi:10.3390/condmat8030055
  • Zhang, B.; Zhang, S.; Long, M. Magnetothermoelectric properties of Al-Porphyrin sandwiched by graphene nanoribbon electrode based on quantum interference. Physica E: Low-dimensional Systems and Nanostructures 2022, 139, 115189. doi:10.1016/j.physe.2022.115189
  • Mijbil, Z. Y. Unexpected Fano resonance in deformed porphyrin. Physica B: Condensed Matter 2021, 606, 412800. doi:10.1016/j.physb.2020.412800
  • Mondal, R.; Bhattacharya, B.; Singh, N. B.; Sarkar, U. Theoretical study of electronic transport through P-porphyrin and S-porphyrin nanoribbons. Journal of molecular graphics & modelling 2020, 97, 107543. doi:10.1016/j.jmgm.2020.107543
  • Sadeghi, H. Quantum and Phonon Interference-Enhanced Molecular-Scale Thermoelectricity. The journal of physical chemistry. C, Nanomaterials and interfaces 2019, 123, 12556–12562. doi:10.1021/acs.jpcc.8b12538
  • Noori, M. D.; Sadeghi, H.; Lambert, C. J. Stable-radicals increase the conductance and Seebeck coefficient of graphene nanoconstrictions. Nanoscale 2018, 10, 19220–19223. doi:10.1039/c8nr04869j
  • Song, E.; Baranovskiy, A. E.; Xu, E.; Busani, T.; Swartzentruber, B. S.; Zhang, S.; Amouyal, Y.; Martinez, J. A. Manipulating thermal and electronic transports in thermoelectric Bi2Te3 nanowires by porphyrin adsorption. AIP Advances 2018, 8, 105010. doi:10.1063/1.5046385
  • Carbone, M.; Micheli, L.; Limosani, F.; Possanza, F.; Abdallah, Y.; Tagliatesta, P. Ruthenium and manganese metalloporphyrins modified screen-printed electrodes for bio-relevant electroactive targets. Journal of Porphyrins and Phthalocyanines 2018, 22, 491–500. doi:10.1142/s1088424618500402
  • Sadeghi, H. Theory of electron, phonon and spin transport in nanoscale quantum devices. Nanotechnology 2018, 29, 373001. doi:10.1088/1361-6528/aace21
  • Algethami, N.; Sadeghi, H.; Sangtarash, S.; Lambert, C. J. The Conductance of Porphyrin-Based Molecular Nanowires Increases with Length. Nano letters 2018, 18, 4482–4486. doi:10.1021/acs.nanolett.8b01621
  • Wu, Q.; Sadeghi, H.; Lambert, C. J. MoS2 nano flakes with self-adaptive contacts for efficient thermoelectric energy harvesting. Nanoscale 2018, 10, 7575–7580. doi:10.1039/c8nr01635f
  • Miao, R. Ph.D. Thesis, Jan 1, 2018.
  • Cui, L. Ph.D. Thesis, Jan 1, 2018.
  • Sadeghi, H.; Sangtarash, S.; Lambert, C. J. Robust Molecular Anchoring to Graphene Electrodes. Nano letters 2017, 17, 4611–4618. doi:10.1021/acs.nanolett.7b01001
  • Glebov, A. A.; Katkov, V. L.; Osipov, V. A. Effect of edge vacancies on performance of planar graphene tunnel field-effect transistor. EPL (Europhysics Letters) 2017, 118, 27003. doi:10.1209/0295-5075/118/27003
  • Li, Q.; Strange, M.; Duchemin, I.; Donadio, D.; Solomon, G. C. A Strategy to Suppress Phonon Transport in Molecular Junctions Using π-Stacked Systems. The Journal of Physical Chemistry C 2017, 121, 7175–7182. doi:10.1021/acs.jpcc.7b02005
  • Cui, L.; Miao, R.; Jiang, C.; Meyhofer, E.; Reddy, P. Perspective: Thermal and thermoelectric transport in molecular junctions. The Journal of Chemical Physics 2017, 146, 092201. doi:10.1063/1.4976982
  • Mukherjee, B.; Ray, A. K.; Sharma, A. K.; Huang, D. Single-molecule devices: materials, structures and characteristics. Journal of Materials Science: Materials in Electronics 2016, 28, 3936–3954. doi:10.1007/s10854-016-6065-1
Other Beilstein-Institut Open Science Activities