Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish

Zitao Zhou, Jino Son, Bryan Harper, Zheng Zhou and Stacey Harper
Beilstein J. Nanotechnol. 2015, 6, 1568–1579. https://doi.org/10.3762/bjnano.6.160

Supporting Information

Supporting Information File 1: Zebrafish malformation and behavioral data. The 19 sub-lethal endpoints are developmental progression (DP), spontaneous movement (SP), notochord (N), yolk sac edema (Y), axis (A), eye (E), snout (Sn), jaw (J), otic (O), heart (H), brain (B), somite (So), pectoral fin (PF), caudal fin (CF), pigment (P), circulation (C), trunk (T), swim bladder (SB), and touch response (TR).
Format: XLSX Size: 20.0 KB Download
Supporting Information File 2: Fisher’s exact test p-value. The 19 sub-lethal endpoints are developmental progression (DP), spontaneous movement (SP), notochord (N), yolk sac edema (Y), axis (A), eye (E), snout (Sn), jaw (J), otic (O), heart (H), brain (B), somite (So), pectoral fin (PF), caudal fin (CF), pigment (P), circulation (C), trunk (T), swim bladder (SB), and touch response (TR). Included are three mortality (M) endpoints at 24 and 120 hours post fertilization after the exposure to ZnO NP and the sum of two M.
Format: XLSX Size: 64.0 KB Download
Supporting Information File 3: Cluster analysis of converted data using Euclidean distance to partition into A) 3, B) 4, C) 5, D) 6 clusters.
Format: PNG Size: 249.3 KB Download
Supporting Information File 4: Kriging estimations of zebrafish mortality data at A) 0.016 ppm, B) 0.08 ppm, C) 0.4 ppm, D) 2 ppm, E) 10 ppm, F) 50 ppm.
Format: PNG Size: 829.5 KB Download
Supporting Information File 5: Embryonic zebrafish mortality at 24 and 120 hours post fertilization after ZnO NP exposure.
Format: XLSX Size: 56.7 KB Download
Supporting Information File 6: XRD analysis of three different ZnO NPs.
Format: PNG Size: 101.1 KB Download

Cite the Following Article

Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish
Zitao Zhou, Jino Son, Bryan Harper, Zheng Zhou and Stacey Harper
Beilstein J. Nanotechnol. 2015, 6, 1568–1579. https://doi.org/10.3762/bjnano.6.160

How to Cite

Zhou, Z.; Son, J.; Harper, B.; Zhou, Z.; Harper, S. Beilstein J. Nanotechnol. 2015, 6, 1568–1579. doi:10.3762/bjnano.6.160

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Valdiglesias, V.; Alba-González, A.; Fernández-Bertólez, N.; Touzani, A.; Ramos-Pan, L.; Reis, A. T.; Moreda-Piñeiro, J.; Yáñez, J.; Laffon, B.; Folgueira, M. Effects of Zinc Oxide Nanoparticle Exposure on Human Glial Cells and Zebrafish Embryos. International journal of molecular sciences 2023, 24, 12297. doi:10.3390/ijms241512297
  • Ejileugha, C.; Ezejiofor, A. N.; Ezealisiji, K. M.; Orisakwe, O. E. Metal oxide nanoparticles in oil drilling: Aquatic toxicological concerns. Journal of Hazardous Materials Advances 2022, 7, 100116. doi:10.1016/j.hazadv.2022.100116
  • Wang, S.; Alenius, H.; El-Nezami, H.; Karisola, P. A New Look at the Effects of Engineered ZnO and TiO2 Nanoparticles: Evidence from Transcriptomics Studies. Nanomaterials (Basel, Switzerland) 2022, 12, 1247. doi:10.3390/nano12081247
  • d'Amora, M.; Schmidt, T. J. N.; Konstantinidou, S.; Raffa, V.; De Angelis, F.; Tantussi, F. Effects of Metal Oxide Nanoparticles in Zebrafish. Oxidative medicine and cellular longevity 2022, 2022, 3313016–37. doi:10.1155/2022/3313016
  • Robinson, R. L. M.; Sarimveis, H.; Doganis, P.; Jia, X.; Kotzabasaki, M.; Gousiadou, C.; Harper, S. L.; Wilkins, T. A. Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning. Beilstein journal of nanotechnology 2021, 12, 1297–1325. doi:10.3762/bjnano.12.97
  • Liu, X.; Wang, J.; Huang, Y.-W. Understanding the role of nano-TiO2 on the toxicity of Pb on C. dubia through modeling—Is it additive or synergistic?. Frontiers of Environmental Science & Engineering 2021, 16, 1–11. doi:10.1007/s11783-021-1493-4
  • Chong, C. L.; Fang, C. M.; Pung, S.-Y.; Ong, C. E.; Pung, Y. F.; Kong, C.; Pan, Y. Current Updates On the In vivo Assessment of Zinc Oxide Nanoparticles Toxicity Using Animal Models. BioNanoScience 2021, 11, 590–620. doi:10.1007/s12668-021-00845-2
  • Gousiadou, C.; Robinson, R. L. M.; Kotzabasaki, M.; Doganis, P.; Wilkins, T. A.; Jia, X.; Sarimveis, H.; Harper, S. L. Machine learning predictions of concentration-specific aggregate hazard scores of inorganic nanomaterials in embryonic zebrafish. Nanotoxicology 2021, 15, 446–476. doi:10.1080/17435390.2021.1872113
  • Wu, H.; Huang, L.; Rose, A.; Grassian, V. H. Impact of surface adsorbed biologically and environmentally relevant coatings on TiO2 nanoparticle reactivity. Environmental Science: Nano 2020, 7, 3783–3793. doi:10.1039/d0en00706d
  • Xiaoli, F.; Qiyue, C.; Weihong, G.; Yaqing, Z.; Chen, H.; Junrong, W.; Longquan, S. Toxicology data of graphene-family nanomaterials: an update. Archives of toxicology 2020, 94, 1915–1939. doi:10.1007/s00204-020-02717-2
  • Barbato, V.; Talevi, R.; Gualtieri, R.; Pallotta, M. M.; Di Nardo, M.; Costanzo, V.; Catapano, G.; Capriglione, T. Polystyrene nanoparticles may affect cell mitosis and compromise early embryo development in mammals. Theriogenology 2020, 145, 18–23. doi:10.1016/j.theriogenology.2020.01.007
  • Hunt, N. J. Handbook of surface-functionalized nanomaterials: safety and legal aspects. Handbook of Functionalized Nanomaterials for Industrial Applications; Elsevier, 2020; pp 945–982. doi:10.1016/b978-0-12-816787-8.00029-6
  • Bai, C.; Tang, M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. Journal of applied toxicology : JAT 2019, 40, 37–63. doi:10.1002/jat.3910
  • Wu, H.; Gonzalez-Pech, N. I.; Grassian, V. H. Displacement reactions between environmentally and biologically relevant ligands on TiO2 nanoparticles: insights into the aging of nanoparticles in the environment. Environmental Science: Nano 2019, 6, 489–504. doi:10.1039/c8en00780b
  • Lamon, L.; Asturiol, D.; Vilchez, A.; Ruperez-Illescas, R.; Cabellos, J.; Richarz, A.-N.; Worth, A. Computational models for the assessment of manufactured nanomaterials: development of model reporting standards and mapping of the model landscape. Computational toxicology (Amsterdam, Netherlands) 2019, 9, 143–151. doi:10.1016/j.comtox.2018.12.002
  • Zanjani, J. S. M.; Oguz, O.; Okan, B. S.; Yildiz, M.; Menceloğlu, Y. Z. Polymer composites containing functionalized nanoparticles and the environment. Polymer Composites with Functionalized Nanoparticles; Elsevier, 2019; pp 437–466. doi:10.1016/b978-0-12-814064-2.00014-7
  • Jeong, J.; Song, T.; Chatterjee, N.; Choi, I.; Kyung, Y.; Choi, J. Developing adverse outcome pathways on silver nanoparticle-induced reproductive toxicity via oxidative stress in the nematode Caenorhabditis elegans using a Bayesian network model. Nanotoxicology 2018, 12, 1182–1197. doi:10.1080/17435390.2018.1529835
  • Zhang, Q.; Ding, Y.; He, K.; Li, H.; Gao, F.; Moehling, T.; Wu, X.; Duncan, J. W.; Niu, Q. Exposure to Alumina Nanoparticles in Female Mice During Pregnancy Induces Neurodevelopmental Toxicity in the Offspring. Frontiers in pharmacology 2018, 9, 253. doi:10.3389/fphar.2018.00253
  • De Matteis, V.; Rinaldi, R. Toxicity Assessment in the Nanoparticle Era. Advances in experimental medicine and biology 2018, 1048, 1–19. doi:10.1007/978-3-319-72041-8_1
  • Mala, R.; Celsia, A. S. R. Toxicity of nanomaterials to biomedical applications— A review. Fundamental Biomaterials: Ceramics; Elsevier, 2018; pp 439–473. doi:10.1016/b978-0-08-102203-0.00015-9
Other Beilstein-Institut Open Science Activities