Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

Luc Aymard, Yassine Oumellal and Jean-Pierre Bonnet
Beilstein J. Nanotechnol. 2015, 6, 1821–1839. https://doi.org/10.3762/bjnano.6.186

Cite the Following Article

Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries
Luc Aymard, Yassine Oumellal and Jean-Pierre Bonnet
Beilstein J. Nanotechnol. 2015, 6, 1821–1839. https://doi.org/10.3762/bjnano.6.186

How to Cite

Aymard, L.; Oumellal, Y.; Bonnet, J.-P. Beilstein J. Nanotechnol. 2015, 6, 1821–1839. doi:10.3762/bjnano.6.186

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Pukazhselvan, D.; Çaha, I.; de Lemos, C.; Mikhalev, S. M.; Deepak, F. L.; Fagg, D. P. Understanding the catalysis of chromium trioxide added magnesium hydride for hydrogen storage and Li ion battery applications. Journal of Magnesium and Alloys 2024. doi:10.1016/j.jma.2024.03.007
  • Gao, P.; Ju, S.; Huang, Y.; Xia, G.; Sun, D.; Yu, X. Porous Magnesium Hydride Nanoparticles Uniformly Coated by Mg‐Based Composites toward Advanced Lithium Storage Performance. Small Structures 2024, 5. doi:10.1002/sstr.202300365
  • Batalović, K.; Radaković, J.; Kuzmanović, B.; Medić Ilić, M.; Paskaš Mamula, B. Machine learning-based high-throughput screening of Mg-containing alloys for hydrogen storage and energy conversion applications. Journal of Energy Storage 2023, 68, 107720. doi:10.1016/j.est.2023.107720
  • Song, M.; Zhang, L.; Wu, F.; Zhang, H.; Zhao, H.; Chen, L.; Li, H. Recent advances of magnesium hydride as an energy storage material. Journal of Materials Science & Technology 2023, 149, 99–111. doi:10.1016/j.jmst.2022.11.032
  • Cuevas, F.; Laïk, B.; Zhang, J.; Mateos, M.; Pereira-Ramos, J.-P.; Latroche, M. Mechanochemical synthesis of pseudobinary Ti-V hydrides and their conversion reaction with Li and Na. Journal of Alloys and Compounds 2023, 939, 168785. doi:10.1016/j.jallcom.2023.168785
  • Chen, Y.; Inoishi, A.; Okada, S.; Sakaebe, H.; Albrecht, K. Tih2-Based Anode that Forms Solid Electrolyte in Situ: Achieving High Volumetric Energy Density with Ultra-Low Content of Conducting Agent. Elsevier BV 2023. doi:10.2139/ssrn.4604014
  • Salman, M. S.; Lai, Q.; Luo, X.; Pratthana, C.; Rambhujun, N.; Costalin, M.; Wang, T.; Sapkota, P.; Liu, W.; Grahame, A.; Tupe, J.; Aguey-Zinsou, K.-F. The power of multifunctional metal hydrides: A key enabler beyond hydrogen storage. Journal of Alloys and Compounds 2022, 920, 165936. doi:10.1016/j.jallcom.2022.165936
  • Baraban, A.; Chernov, I.; Dmitriev, V.; Elets, D.; Gabis, I.; Kuznetsov, V.; Voyt, A. The Mg2NiH4 film on nickel substrate: synthesis, properties and kinetics of formation. Thin Solid Films 2022, 762, 139556. doi:10.1016/j.tsf.2022.139556
  • Du, J.; Li, Q.; Chai, J.; Jiang, L.; Zhang, Q.; Han, N.; Zhang, W.; Tang, B. Review of metal oxides as anode materials for lithium-ion batteries. Dalton transactions (Cambridge, England : 2003) 2022, 51, 9584–9590. doi:10.1039/d2dt01415g
  • Cano-Banda, F.; Hernandez-Guerrero, A.; Ichikawa, T.; Jain, A. Application of Metal Hydrides for All-Solid-State Li-Ion Batteries. ACS Symposium Series; American Chemical Society, 2022; pp 87–112. doi:10.1021/bk-2022-1414.ch005
  • Gao, P.; Ju, S.; Liu, Z.; Xia, G.; Sun, D.; Yu, X. Metal Hydrides with In Situ Built Electron/Ion Dual-Conductive Framework for Stable All-Solid-State Li-Ion Batteries. ACS nano 2022, 16, 8040–8050. doi:10.1021/acsnano.2c01038
  • Cuevas, F.; Amdisen, M. B.; Baricco, M.; Buckley, C. E.; Cho, Y. W.; de Jongh, P.; de Kort, L. M.; Grinderslev, J. B.; Gulino, V.; Hauback, B. C.; Heere, M.; Humphries, T.; Jensen, T. R.; Kim, S.; Kisu, K.; Lee, Y.-S.; Li, H.-W.; Mohtadi, R.; Møller, K. T.; Ngene, P.; Noréus, D.; Orimo, S.-i.; Paskevicius, M.; Polanski, M.; Sartori, S.; Skov, L. N.; Sørby, M. H.; Wood, B. C.; Yartys, V. A.; Zhu, M.; Latroche, M. Metallic and complex hydride-based electrochemical storage of energy. Progress in Energy 2022, 4, 32001–032001. doi:10.1088/2516-1083/ac665b
  • Zhong, S.; Ju, S.; Shao, Y.; Chen, W.; Zhang, T.; Huang, Y.; Zhang, H.; Xia, G.; Yu, X. Magnesium hydride nanoparticles anchored on MXene sheets as high capacity anode for lithium-ion batteries. Journal of Energy Chemistry 2021, 62, 431–439. doi:10.1016/j.jechem.2021.03.049
  • Leng, J.; Huang, L.; Qi, X.; Zhou, X.; Chen, Y. The electrochemical performance of AB5H6 as anode material for lithium-ion batteries. Ionics 2021, 1–8.
  • Cano-Banda, F.; Singh, R.; Hernandez-Guerrero, A.; Jain, A.; Ichikawa, T. Enhanced performance of MgH2 composite electrode using glass-ceramic electrolytes for all-solid-state Li-ion batteries. Journal of Alloys and Compounds 2021, 863, 158729. doi:10.1016/j.jallcom.2021.158729
  • Cano-Banda, F.; Gallardo-Gutierrez, A.; Luviano-Ortiz, L.; Hernandez-Guerrero, A.; Jain, A.; Ichikawa, T. High capacity MgH2 composite electrodes for all-solid-state Li-ion battery operating at ambient temperature. International Journal of Hydrogen Energy 2021, 46, 1030–1037. doi:10.1016/j.ijhydene.2020.09.202
  • Bannenberg, L. J.; Heere, M.; Benzidi, H.; Montero, J.; Dematteis, E. M.; Suwarno, S.; Jaroń, T.; Winny, M.; Orłowski, P. A.; Wegner, W.; Starobrat, A.; Fijalkowski, K. J.; Grochala, W.; Qian, Z.; Bonnet, J.-P.; Nuta, I.; Lohstroh, W.; Zlotea, C.; Mounkachi, O.; Cuevas, F.; Chatillon, C.; Latroche, M.; Fichtner, M.; Baricco, M.; Hauback, B. C.; Kharbachi, A. E. Metal (boro-) hydrides for high energy density storage and relevant emerging technologies. International Journal of Hydrogen Energy 2020, 45, 33687–33730. doi:10.1016/j.ijhydene.2020.08.119
  • Lobo, N.; Klimkowicz, A.; Takasaki, A. EFFECT OF TiO2 + Nb2O5 + TiH2 CATALYSTS ON HYDROGEN STORAGE PROPERTIES OF MAGNESIUM HYDRIDE. MRS Advances 2020, 5, 1059–1069. doi:10.1557/adv.2020.29
  • Zheng, X.; Li, G.; Guo, Y.; Yu, H.; Li, S.; Xiao, R.; Zheng, J.; Li, X. Yttrium trihydride enhanced lithium storage in carbon materials. Carbon 2020, 164, 317–323. doi:10.1016/j.carbon.2020.04.020
  • Kharbachi, A. E.; Dematteis, E. M.; Shinzato, K.; Stevenson, S. C.; Bannenberg, L. J.; Heere, M.; Zlotea, C.; Szilágyi, P. Á.; Bonnet, J.-P.; Grochala, W.; Gregory, D. H.; Ichikawa, T.; Baricco, M.; Hauback, B. C. Metal Hydrides and Related Materials. Energy Carriers for Novel Hydrogen and Electrochemical Storage. The Journal of Physical Chemistry C 2020, 124, 7599–7607. doi:10.1021/acs.jpcc.0c01806
Other Beilstein-Institut Open Science Activities