The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

Daniel Gandyra, Stefan Walheim, Stanislav Gorb, Wilhelm Barthlott and Thomas Schimmel
Beilstein J. Nanotechnol. 2015, 6, 11–18. https://doi.org/10.3762/bjnano.6.2

Cite the Following Article

The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness
Daniel Gandyra, Stefan Walheim, Stanislav Gorb, Wilhelm Barthlott and Thomas Schimmel
Beilstein J. Nanotechnol. 2015, 6, 11–18. https://doi.org/10.3762/bjnano.6.2

How to Cite

Gandyra, D.; Walheim, S.; Gorb, S.; Barthlott, W.; Schimmel, T. Beilstein J. Nanotechnol. 2015, 6, 11–18. doi:10.3762/bjnano.6.2

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Han, W.; Wang, S. Advances in Hemostatic Hydrogels That Can Adhere to Wet Surfaces. Gels (Basel, Switzerland) 2022, 9, 2. doi:10.3390/gels9010002
  • Foday, E. H.; Sesay, T.; Koroma, E. B.; Kanneh, A. A. G. S.; Chineche, E. B.; Jalloh, A. Y.; Koroma, J. M. Biotemplate Replication of Novel Mangifera indica Leaf (MIL) for Atmospheric Water Harvesting: Intrinsic Surface Wettability and Collection Efficiency. Biomimetics (Basel, Switzerland) 2022, 7, 147. doi:10.3390/biomimetics7040147
  • Kim, M.; Yoo, S.; Jeong, H. E.; Kwak, M. K. Fabrication of Salvinia-inspired surfaces for hydrodynamic drag reduction by capillary-force-induced clustering. Nature communications 2022, 13, 5181. doi:10.1038/s41467-022-32919-4
  • Foday, E. H.; Bai, B. Mangifera indica Leaf (MIL) as a Novel Material in Atmospheric Water Collection. ACS omega 2022, 7, 11809–11817. doi:10.1021/acsomega.1c07133
  • Zhang, Y.; Hu, Y.; Xu, B.; Fan, J.; Zhu, S.; Song, Y.; Cui, Z.; Wu, H.; Yang, Y.; Zhu, W.; Wang, F.; Li, J.; Wu, D.; Chu, J.; Jiang, L. Robust Underwater Air Layer Retention and Restoration on Salvinia-Inspired Self-Grown Heterogeneous Architectures. ACS nano 2022, 16, 2730–2740. doi:10.1021/acsnano.1c09669
  • Wang, H.; Li, X.; Li, M.; Wang, S.; Zuo, A.; Guo, J. Bioadhesion design of hydrogels: adhesion strategies and evaluation methods for biological interfaces. Journal of Adhesion Science and Technology 2022, 37, 335–369. doi:10.1080/01694243.2021.2020502
  • Konrad, W.; Roth-Nebelsick, A.; Kessel, B.; Miranda, T.; Ebner, M.; Schott, R.; Nebelsick, J. H. The impact of raindrops on Salvinia molesta leaves: effects of trichomes and elasticity. Journal of the Royal Society, Interface 2021, 18, 20210676. doi:10.1098/rsif.2021.0676
  • Gandyra, D.; Walheim, S.; Gorb, S. N.; Ditsche, P.; Barthlott, W.; Schimmel, T. Air Retention under Water by the Floating Fern Salvinia: The Crucial Role of a Trapped Air Layer as a Pneumatic Spring. Small (Weinheim an der Bergstrasse, Germany) 2020, 16, 2003425. doi:10.1002/smll.202003425
  • Elbadawi, M.; Andrikopoulos, G.; Nikolakopoulos, G.; Gustafsson, T. ROBIO - Bio-Inspired Climbing Robots in Wet Environments: Recent Trends in Adhesion Methods and Materials. In 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, 2018; pp 2347–2353. doi:10.1109/robio.2018.8665184
  • Zheng, Y.; Zhou, X.; Xing, Z.; Tu, T. Exploring the underwater air-retaining ability and thermal insulating effect of terry fabrics inspired by Salvinia molesta:. Textile Research Journal 2018, 89, 2859–2869. doi:10.1177/0040517518803795
  • Zheng, Y.; Zhou, X.; Xing, Z.; Tu, T. Fabrication of a superhydrophobic surface with underwater air-retaining properties by electrostatic flocking. RSC advances 2018, 8, 10719–10726. doi:10.1039/c7ra13262j
  • Yang, Y.; Li, X.; Zheng, X.; Chen, Z.; Zhou, Q.; Chen, Y. 3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation. Advanced materials (Deerfield Beach, Fla.) 2017, 30, 1704912. doi:10.1002/adma.201704912
  • Barthlott, W.; Mail, M.; Bhushan, B.; Koch, K. Plant Surfaces: Structures and Functions for Biomimetic Innovations. Nano-micro letters 2017, 9, 23. doi:10.1007/s40820-016-0125-1
  • Barthlott, W.; Mail, M.; Bhushan, B.; Koch, K. Plant Surfaces: Structures and Functions for Biomimetic Applications. Springer Handbook of Nanotechnology; Springer Berlin Heidelberg, 2017; pp 1265–1305. doi:10.1007/978-3-662-54357-3_36
  • Barthlott, W.; Mail, M.; Neinhuis, C. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 2016, 374, 20160191. doi:10.1098/rsta.2016.0191
  • Tinker-Mill, C. L. Theoretical Concepts of Scanning Probe Microscopy and Dynamic Light Scattering and Their Relation to the Study of Peptide Nanostructures. Nanoscale Imaging and Characterisation of Amyloid-β; Springer International Publishing, 2016; pp 7–30. doi:10.1007/978-3-319-39534-0_2
  • Tinker-Mill, C. L. 2016.
  • Ditsche, P.; Gorb, E. V.; Mayser, M.; Gorb, S. N.; Schimmel, T.; Barthlott, W. Elasticity of the hair cover in air-retaining Salvinia surfaces. Applied Physics A 2015, 121, 505–511. doi:10.1007/s00339-015-9439-y
Other Beilstein-Institut Open Science Activities