Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data

Beti Andonovic, Abdulakim Ademi, Anita Grozdanov, Perica Paunović and Aleksandar T. Dimitrov
Beilstein J. Nanotechnol. 2015, 6, 2113–2122. https://doi.org/10.3762/bjnano.6.216

Cite the Following Article

Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data
Beti Andonovic, Abdulakim Ademi, Anita Grozdanov, Perica Paunović and Aleksandar T. Dimitrov
Beilstein J. Nanotechnol. 2015, 6, 2113–2122. https://doi.org/10.3762/bjnano.6.216

How to Cite

Andonovic, B.; Ademi, A.; Grozdanov, A.; Paunović, P.; Dimitrov, A. T. Beilstein J. Nanotechnol. 2015, 6, 2113–2122. doi:10.3762/bjnano.6.216

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Tatrari, G.; Tewari, C.; Pathak, M.; Bhatt, D.; Solanki, M.; Shah, F. U.; Sahoo, N. G. Coconut-husk derived graphene for supercapacitor applications: comparative analysis of polymer gel and aqueous electrolytes. Materials Advances 2023, 4, 3310–3322. doi:10.1039/d3ma00126a
  • Ostermann, M.; Bilotto, P.; Kadlec, M.; Schodl, J.; Duchoslav, J.; Stöger-Pollach, M.; Lieberzeit, P.; Valtiner, M. l-Ascorbic Acid Treatment of Electrochemical Graphene Nanosheets: Reduction Optimization and Application for De-Icing, Water Uptake Prevention, and Corrosion Resistance. ACS applied materials & interfaces 2023, 15, 22471–22484. doi:10.1021/acsami.2c22854
  • Abbas, Q.; Shinde, P. A.; Abdelkareem, M. A.; Alami, A. H.; Mirzaeian, M.; Yadav, A.; Olabi, A. G. Graphene Synthesis Techniques and Environmental Applications. Materials (Basel, Switzerland) 2022, 15, 7804. doi:10.3390/ma15217804
  • Ostermann, M.; Velicsanyi, P.; Bilotto, P.; Schodl, J.; Nadlinger, M.; Fafilek, G.; Lieberzeit, P. A.; Valtiner, M. Development and Up-Scaling of Electrochemical Production and Mild Thermal Reduction of Graphene Oxide. Materials (Basel, Switzerland) 2022, 15, 4639. doi:10.3390/ma15134639
  • Wang, X.; Xie, P.; He, L.; Liang, Y.; Zhang, L.; Miao, Y.; Liu, Z. Ultralight, Mechanically Enhanced, and Thermally Improved Graphene-Cellulose-Polyethyleneimine Aerogels for the Adsorption of Anionic and Cationic Dyes. Nanomaterials (Basel, Switzerland) 2022, 12, 1727. doi:10.3390/nano12101727
  • Nandi, D.; Ghosh, S.; Ghosh, A.; Siengchin, S.; Roy, A.; Gupta, K.; Parameswaranpillai, J.; Bhowmick, A. K.; Ghosh, U. C. Arsenic removal from water by graphene nanoplatelets prepared from nail waste: A physicochemical study of adsorption based on process optimization, kinetics, isotherm and thermodynamics. Environmental Nanotechnology, Monitoring & Management 2021, 16, 100564. doi:10.1016/j.enmm.2021.100564
  • Pang, Y. X.; Yew, M.; Yan, Y.; Khine, P.; Filbert, A.; Manickam, S.; Foo, D. C. Y.; Sharmin, N.; Lester, E.; Wu, T.; Pang, C. H. Application of supercritical fluid in the synthesis of graphene materials: a review. Journal of Nanoparticle Research 2021, 23, 1–28. doi:10.1007/s11051-021-05254-w
  • Min, J.-H.; Li, K.-H.; Kim, Y.; Min, J.-W.; Kang, C. H.; Kim, K.; Lee, J.-S.; Lee, K. J.; Jeong, S.-M.; Lee, D.-S.; Bae, S.-Y.; Ng, T. K.; Ooi, B. S. Toward Large-Scale Ga2O3 Membranes via Quasi-Van Der Waals Epitaxy on Epitaxial Graphene Layers. ACS applied materials & interfaces 2021, 13, 13410–13418. doi:10.1021/acsami.1c01042
  • He, K.; Zhang, Z.-Y.; Zhang, F.-S. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery. Waste management (New York, N.Y.) 2021, 124, 283–292. doi:10.1016/j.wasman.2021.01.017
  • Nandi, D.; Parameswaranpillai, J.; Siengchin, S. Synthesis of three-dimensional graphene architectures from chicken feather and its unusual dimensional crossover in electronic conductivity. Nano-Structures & Nano-Objects 2021, 25, 100665. doi:10.1016/j.nanoso.2020.100665
  • Bui, H. T.; Jang, H.; Ahn, D.; Han, J.-H.; Sung, M. M.; Kutwade, V. V.; Patil, M.; Sharma, R.; Han, S.-H. High-performance Li–Se battery: Li2Se cathode as intercalation product of electrochemical in situ reduction of multilayer graphene-embedded 2D-MoSe2. Electrochimica Acta 2021, 368, 137556. doi:10.1016/j.electacta.2020.137556
  • Mandal, D.; Mahapatra, P. L.; Kumari, R.; Kumbhakar, P.; Biswas, A.; Lahiri, B.; Chandra, A.; Tiwary, C. S. Convert waste petroleum coke to multi-heteroatom self-doped graphene and its application as supercapacitors. Emergent Materials 2021, 4, 531–544. doi:10.1007/s42247-020-00159-1
  • Chinh, V. D.; Bavasso, I.; Di Palma, L.; Felici, A. C.; Scarsella, M.; Vilardi, G.; Bracciale, M. P.; Van, N. T. Enhancing the photocatalytic activity of TiO2 and TiO2–SiO2 by coupling with graphene–gold nanocomposites. Journal of Materials Science: Materials in Electronics 2021, 32, 5082–5093. doi:10.1007/s10854-021-05242-9
  • Chinh, V. D.; Bavasso, I.; Di Palma, L.; Felici, A. C.; Scarsella, M.; Vilardi, G.; Bracciale, M. P.; Van, N. T. T. Enhancing the photocatalytic activity of TiO2 and TiO2–SiO2 by coupling with graphene–gold nanocomposites. Journal of Materials Science: Materials in Electronics 2021, 32, 1–12.
  • Andonovic, V.; Dimitrov, A. T.; Paunović, P.; Andonovic, B. Determination of the molecular structure and (m,n) index assignment to the constituent walls of MWCNTs with undetermined diameters and chirality. Beilstein Institut 2020, 2020, 132. doi:10.3762/bxiv.2020.132.v1
  • Gajghate, S. S.; Vashistha, S.; Saha, B. B.; Bhaumik, S. Experimental and Numerical Investigation of Pool Boiling Heat Transfer over Different Thickness of Graphene–Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) Layers on Copper Heater Surface. Heat Transfer Engineering 2020, 42, 1203–1222. doi:10.1080/01457632.2020.1777013
  • Safy, M. E. A.; Haikal, R. R.; Elshazly, B.; Hamdy, A.; Ali, F.; Maarouf, A. A.; Alkordi, M. H. Charge percolation in metal-organic framework (HKUST-1)‒graphene nanocomposites. Applied Materials Today 2020, 19, 100604. doi:10.1016/j.apmt.2020.100604
  • Ning, M.; Shichao, W.; Li, H.; Xingqin, X.; Huang, L.; Wang, Y.; Strizhak, P. E.; Tang, J. Direct fabrication of graphene oxide fiber by injection spinning for flexible and wearable electronics. Journal of Materials Science 2020, 55, 12065–12081. doi:10.1007/s10853-020-04798-x
  • Abbandanak, S. H.; Aghamohammadi, H.; Akbarzadeh, E.; Shabani, N.; Eslami-Farsani, R.; Kangooie, M.; Siadati, M. H. Morphological/SAXS/WAXS studies on the electrochemical synthesis of graphene nanoplatelets. Ceramics International 2019, 45, 20882–20890. doi:10.1016/j.ceramint.2019.07.077
  • Gajghate, S. S.; Barathula, S.; Das, S.; Saha, B. B.; Bhaumik, S. Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface. Journal of Thermal Analysis and Calorimetry 2019, 140, 1393–1411. doi:10.1007/s10973-019-08740-5
Other Beilstein-Institut Open Science Activities