Kelvin probe force microscopy for local characterisation of active nanoelectronic devices

Tino Wagner, Hannes Beyer, Patrick Reissner, Philipp Mensch, Heike Riel, Bernd Gotsmann and Andreas Stemmer
Beilstein J. Nanotechnol. 2015, 6, 2193–2206. https://doi.org/10.3762/bjnano.6.225

Supporting Information

Supporting Information File 1: Detailed derivations of the effective forces and the state-space KFM controller.
Format: PDF Size: 156.8 KB Download

Cite the Following Article

Kelvin probe force microscopy for local characterisation of active nanoelectronic devices
Tino Wagner, Hannes Beyer, Patrick Reissner, Philipp Mensch, Heike Riel, Bernd Gotsmann and Andreas Stemmer
Beilstein J. Nanotechnol. 2015, 6, 2193–2206. https://doi.org/10.3762/bjnano.6.225

How to Cite

Wagner, T.; Beyer, H.; Reissner, P.; Mensch, P.; Riel, H.; Gotsmann, B.; Stemmer, A. Beilstein J. Nanotechnol. 2015, 6, 2193–2206. doi:10.3762/bjnano.6.225

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ishida, N.; Mano, T. Quantitative characterization of built-in potential profile across GaAs p-n junctions using Kelvin probe force microscopy with qPlus sensor AFM. Nanotechnology 2023, 35, 65708–065708. doi:10.1088/1361-6528/ad0b5e
  • Theiler, P. M.; Ritz, C.; Hofmann, R.; Stemmer, A. Detection of a Chirality-Induced Spin Selective Quantum Capacitance in α-Helical Peptides. Nano letters 2023, 23, 8280–8287. doi:10.1021/acs.nanolett.3c02483
  • Lu, B.; Vegso, K.; Micky, S.; Ritz, C.; Bodik, M.; Fedoryshyn, Y. M.; Siffalovic, P.; Stemmer, A. Tunable Subnanometer Gaps in Self-Assembled Monolayer Gold Nanoparticle Superlattices Enabling Strong Plasmonic Field Confinement. ACS nano 2023, 17, 12774–12787. doi:10.1021/acsnano.3c03804
  • Ishida, N. Utilizing the surface potential of a solid electrolyte region as the potential reference in Kelvin probe force microscopy. Beilstein journal of nanotechnology 2022, 13, 1558–1563. doi:10.3762/bjnano.13.129
  • Miyazaki, M.; Sugawara, Y.; Li, Y. J. Dual-bias modulation heterodyne Kelvin probe force microscopy in FM mode. Applied Physics Letters 2022, 121. doi:10.1063/5.0129433
  • Kilpatrick, J. I.; Kargin, E.; Rodriguez, B. J. Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water. Beilstein journal of nanotechnology 2022, 13, 922–943. doi:10.3762/bjnano.13.82
  • Fukuzawa, R.; Liang, J.; Shigekawa, N.; Takahashi, T. Quantitative capacitance measurements in frequency modulation electrostatic force microscopy. Japanese Journal of Applied Physics 2022, 61, SL1005. doi:10.35848/1347-4065/ac5fb9
  • Richheimer, F.; Vincent, T.; Catanzaro, A.; Huáng, N. J.; Baker, M. A.; Dorey, R. A.; Giusca, C. E.; Castro, F. A.; Kazakova, O.; Wood, S. Probing Nanoscale Schottky Barrier Characteristics at WSe2/Graphene Heterostructures via Electrostatic Doping. Advanced Electronic Materials 2022, 8. doi:10.1002/aelm.202200196
  • Gödrich, S.; Schmidt, H.-W.; Papastavrou, G. Stability of Charge Distributions in Electret Films on the nm-Scale. ACS applied materials & interfaces 2022, 14, 4500–4509. doi:10.1021/acsami.1c21174
  • Lanzoni, E. M.; Gallet, T.; Spindler, C.; Ramirez, O.; Boumenou, C. K.; Siebentritt, S.; Redinger, A. The impact of Kelvin probe force microscopy operation modes and environment on grain boundary band bending in perovskite and Cu(In,Ga)Se2 solar cells. Nano Energy 2021, 88, 106270. doi:10.1016/j.nanoen.2021.106270
  • Caballero-Quintana, I.; Rivera-Taco, J.; Barthes, C.; Nicasio-Collazo, J.; Ramos-Ortiz, G.; Maldonado, J.-L.; Maraval, V.; Chauvin, R. Nano-films of carbo-benzene derivatives: Scanning probe microscopy analysis and prospects of use in organic solar cells. Synthetic Metals 2021, 278, 116826. doi:10.1016/j.synthmet.2021.116826
  • Lanzoni, E. M.; Gallet, T.; Spindler, C.; Ramirez, O.; Boumenou, C. K.; Siebentritt, S.; Redinger, A. The impact of Kelvin probe force microscopy operation modes and environment on grain boundary band bending in perovskite and Cu(In,Ga)Se2 solar cells. 2021.
  • Larsen, M. N.; Peters, M. S.; Lemos-Silva, R.; da Silva Filho, D. A.; Jørgensen, B.; Albrektsen, O.; Kjelstrup-Hansen, J. Work function difference of naphthyl end-capped oligothiophene in different crystal alignments studied by Kelvin probe force microscopy. Organic Electronics 2021, 89, 106060. doi:10.1016/j.orgel.2020.106060
  • Ritz, C.; Wagner, T.; Stemmer, A. Measurement of electrostatic tip-sample interactions by time-domain Kelvin probe force microscopy. Beilstein journal of nanotechnology 2020, 11, 911–921. doi:10.3762/bjnano.11.76
  • Xu, J.; Bai, G.; Li, J.; Li, W. Inhomogeneous probe surface induced effect in Kelvin probe force microscopy. Journal of Applied Physics 2020, 127, 184302. doi:10.1063/5.0005276
  • Sun, Y.; Zeng, K. Characterization of Catalysts by Advanced Scanning Probe Microscopy and Spectroscopy. ChemCatChem 2020, 12, 3601–3620. doi:10.1002/cctc.201901877
  • Könemann, F.; Vollmann, M.; Wagner, T.; Ghazali, N. M.; Yamaguchi, T.; Stemmer, A.; Ishibashi, K.; Gotsmann, B. Thermal Conductivity of a Supported Multiwalled Carbon Nanotube. The Journal of Physical Chemistry C 2019, 123, 12460–12465. doi:10.1021/acs.jpcc.9b00692
  • Berweger, S.; Qiu, G.; Wang, Y.; Pollard, B.; Genter, K. L.; Tyrrell-Ead, R.; Wallis, T. M.; Wu, W.; Ye, P. D.; Kabos, P. Imaging Carrier Inhomogeneities in Ambipolar Tellurene Field Effect Transistors. Nano letters 2019, 19, 1289–1294. doi:10.1021/acs.nanolett.8b04865
  • Wagner, T. Steady-state and transient behavior in dynamic atomic force microscopy. Journal of Applied Physics 2019, 125, 044301. doi:10.1063/1.5078954
  • Collins, L.; Kilpatrick, J. I.; Kalinin, S. V.; Rodriguez, B. J. Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review. Reports on progress in physics. Physical Society (Great Britain) 2018, 81, 086101. doi:10.1088/1361-6633/aab560
Other Beilstein-Institut Open Science Activities