Self-organization of gold nanoparticles on silanated surfaces

Htet H. Kyaw, Salim H. Al-Harthi, Azzouz Sellai and Joydeep Dutta
Beilstein J. Nanotechnol. 2015, 6, 2345–2353. https://doi.org/10.3762/bjnano.6.242

Cite the Following Article

Self-organization of gold nanoparticles on silanated surfaces
Htet H. Kyaw, Salim H. Al-Harthi, Azzouz Sellai and Joydeep Dutta
Beilstein J. Nanotechnol. 2015, 6, 2345–2353. https://doi.org/10.3762/bjnano.6.242

How to Cite

Kyaw, H. H.; Al-Harthi, S. H.; Sellai, A.; Dutta, J. Beilstein J. Nanotechnol. 2015, 6, 2345–2353. doi:10.3762/bjnano.6.242

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Machinin, A. M.; Awang, A.; Pien, C. F.; Samavati, A.; Ul-Hamid, A. TiO2 decorated Au nanoparticle enhances wettability of glass for self-cleaning application. Optical Materials 2023, 143, 114246. doi:10.1016/j.optmat.2023.114246
  • Mohamad Nor, N.; Nasrul, S. N.; Zakaria, N. D.; Abdul Razak, K. Simultaneous Sensing of Cd(II), Pb(II), and Cu(II) Using Gold Nanoparticle-Modified APTES-Functionalized Indium Tin Oxide Electrode: Effect of APTES Concentration. ACS omega 2023, 8, 16587–16599. doi:10.1021/acsomega.2c07085
  • Zhou, J.; Gao, M.; Choi, J. Enhancement of Output Power and Durability of DLC-Based Sliding TENGs Modified with Self-Assembled Monolayers. ACS Applied Electronic Materials 2023, 5, 2853–2861. doi:10.1021/acsaelm.3c00340
  • Al-Yahmadi, K.; Kyaw, H. H.; Myint, M. T. Z.; Al-Mamari, R.; Dobretsov, S.; Al-Abri, M. Development of portable sensor for the detection of bacteria: effect of gold nanoparticle size, effective surface area, and interparticle spacing upon sensing interface. Discover nano 2023, 18, 45. doi:10.1186/s11671-023-03826-4
  • Ujah, E.; Lai, M.; Slaughter, G. Ultrasensitive tapered optical fiber refractive index glucose sensor. Scientific reports 2023, 13, 4495. doi:10.1038/s41598-023-31127-4
  • Navarro-Tovar, G.; Salado-Leza, D.; Carreón-Álvarez, C.; Acosta-Ruelas, B. J.; Rodríguez-López, J. L. Surface functionalization of nanoparticles: Structure determines function. Antimicrobial Activity of Nanoparticles; Elsevier, 2023; pp 203–248. doi:10.1016/b978-0-12-821637-8.00004-3
  • Lai, M.; Ujah, E.; Slaughter, G. Ultralow Power Refractive Index Tapered Optical Fiber Glucose Sensor. In Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN), Optica Publishing Group, 2023. doi:10.1364/boda.2023.jw2b.3
  • La Ngoc Tran, N.; Phan, B. T.; Ta, H. K. T.; Chi, T. T. K.; Hien, B. T. T.; Phuong, N. T. T.; Nguyen, C. C.; Doan, T. L. H.; Tran, N. H. T. Gold nanoparticles are capped under the IRMOF-3 platform for in-situ surface-enhanced Raman scattering technique and optic fiber sensor. Sensors and Actuators A: Physical 2022, 347, 113932. doi:10.1016/j.sna.2022.113932
  • Sindelo, A.; Britton, J.; Lanterna, A. E.; Scaiano, J. C.; Nyokong, T. Decoration of glass wool with zinc (II) phthalocyanine for the photocatalytic transformation of methyl orange. Journal of Photochemistry and Photobiology A: Chemistry 2022, 432, 114127. doi:10.1016/j.jphotochem.2022.114127
  • Thomas, N.; Sreekeerthi, P.; Swaminathan, P. Combined experimental and simulation study of self-assembly of colloidal gold nanoparticles on silanized glass. Physical chemistry chemical physics : PCCP 2022, 24, 25025–25035. doi:10.1039/d2cp01004f
  • Hwang, Y.; Koo, D. J.; Ferhan, A. R.; Sut, T. N.; Yoon, B. K.; Cho, N.-J.; Jackman, J. A. Optimizing Plasmonic Gold Nanorod Deposition on Glass Surfaces for High-Sensitivity Refractometric Biosensing. Nanomaterials (Basel, Switzerland) 2022, 12, 3432. doi:10.3390/nano12193432
  • Em, S.; Yedigenov, M.; Khamkhash, L.; Atabaev, S.; Molkenova, A.; Poulopoulos, S. G.; Atabaev, T. S. Uncovering the Role of Surface-Attached Ag Nanoparticles in Photodegradation Improvement of Rhodamine B by ZnO-Ag Nanorods. Nanomaterials (Basel, Switzerland) 2022, 12, 2882. doi:10.3390/nano12162882
  • Manera, M. G.; Colombelli, A.; Lospinoso, D.; Rella, S.; Rella, R. Suitably Functionalised Gold Nanoparticles as Heavy Metals Sensors Transducers Based on Carbonic Anhydras. Lecture Notes in Electrical Engineering; Springer International Publishing, 2022; pp 138–146. doi:10.1007/978-3-031-08136-1_22
  • Ayareh, Z.; Moradi, M. Nanoplasmonic Sensor Chip Fabricated Based on Au Nanoparticles: Effect of Graphene Oxide and Reduced Graphene Oxide. Plasmonics 2022, 17, 1437–1444. doi:10.1007/s11468-022-01629-4
  • Zhou, J.; Nie, Y.; Jin, C.; Zhang, J. X. J. Engineering Biomimetic Extracellular Matrix with Silica Nanofibers: From 1D Material to 3D Network. ACS biomaterials science & engineering 2022, 8, 2258–2280. doi:10.1021/acsbiomaterials.1c01525
  • Mercado, D. F.; Ballesteros-Rueda, L. M.; Lizarazo-Gómez, C. C.; Núñez-Rodríguez, B. E.; Arenas-Calderón, E.; Baldovino‑Medrano, V. G. Synthesis and use of functionalized SiO2 nanoparticles for formulating heavy oil macroemulsions. Chemical Engineering Science 2022, 252, 117531. doi:10.1016/j.ces.2022.117531
  • Kim, K.; Lee, K. J.; Jo, N. R.; Jo, E.-J.; Shin, Y.-B.; Kim, M.-G. Wafer-Scale LSPR Substrate: Oblique Deposition of Gold on a Patterned Sapphire Substrate. Biosensors 2022, 12, 158. doi:10.3390/bios12030158
  • Chen, H. J. H.; Lee, T. N.; Tseng, S.-L.; Chen, S.-Z.; Chiu, P.-W. Characterizations of Ion-Sensitive Field-Effect Transistors with Silicon Wire Array Channels and Stack-Sensing Membrane. Journal of The Electrochemical Society 2022, 169, 37511–037511. doi:10.1149/1945-7111/ac5ad9
  • Zhang, S.; Zhong, T.; Xu, Q.; Su, Z.; Jiang, M.; Liu, P. The effects of chemical grafting 1,6-hexanediol diglycidyl ether on the interfacial adhesion between continuous basalt fibers and epoxy resin as well as the tensile strength of composites. Construction and Building Materials 2022, 323, 126563. doi:10.1016/j.conbuildmat.2022.126563
  • Huang, W.-C.; Cheng, K.-F.; Shyu, J.-Y. Flexible SERS substrate of silver nanoparticles on cotton swabs for rapid in situ detection of melamine. Nanoscale advances 2022, 4, 1164–1172. doi:10.1039/d1na00670c

Patents

  • CACERES GIANNI JORGE; CARDENAS ESCUDERO JAFET; SANCHEZ SANCHEZ ALFREDO; VILLALONGA CHICO ANABEL; VILLALONGA SANTANA REYNALDO; GALAN MADRUGA DAVID; MOTTO ROS VINCENT; GARDETTE VINCENT. Detection and quantification of solid metallic nanoparticles by laser-induced ablation spectroscopy (LIBS) with functionalized glass support. (Machine-translation by Google Translate, not legally binding). ES 2952725 A1, Nov 3, 2023.
Other Beilstein-Institut Open Science Activities