Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells

Roswitha Zeis
Beilstein J. Nanotechnol. 2015, 6, 68–83. https://doi.org/10.3762/bjnano.6.8

Cite the Following Article

Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells
Roswitha Zeis
Beilstein J. Nanotechnol. 2015, 6, 68–83. https://doi.org/10.3762/bjnano.6.8

How to Cite

Zeis, R. Beilstein J. Nanotechnol. 2015, 6, 68–83. doi:10.3762/bjnano.6.8

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Vtyurina, E. S.; Ponomarev, I. I.; Naumkin, A. V.; Bukalov, S. S.; Aysin, R. R.; Ponomarev, I. I.; Zhigalina, O. M.; Khmelenin, D. N.; Skupov, K. M. Influence of the Polymer Precursor Structure on the Porosity of Carbon Nanofibers: Application as Electrode in High-Temperature Proton Exchange Membrane Fuel Cells. ACS Applied Nano Materials 2024, 7, 4313–4323. doi:10.1021/acsanm.3c05874
  • Zucconi, A.; Hack, J.; Stocker, R.; Suter, T. A. M.; Rettie, A. J. E.; Brett, D. J. L. Challenges and opportunities for characterisation of high-temperature polymer electrolyte membrane fuel cells: a review. Journal of Materials Chemistry A 2024. doi:10.1039/d3ta06895a
  • Murdock, L. A.; Benicewicz, B. C. Teaching an Old Dog New Tricks: Synthesis, Processing, and Application of Polybenzimidazole (PBI) Membranes. ACS Applied Energy Materials 2023, 7, 239–249. doi:10.1021/acsaem.3c02560
  • Mondal, R. Fundamental insights into structure-performance relationship for proton conductivity enhancement through polymer electrolyte membrane in Proton Exchange Membrane Fuel Cell. Chemical Engineering and Processing - Process Intensification 2023, 194, 109589. doi:10.1016/j.cep.2023.109589
  • Jagan, M.; Vijayachamundeeswari, S. P. The significance of fillers in composite polymer electrolytes for optimizing lithium battery. Ionics 2023, 30, 647–675. doi:10.1007/s11581-023-05318-y
  • Hu, X.; Ao, Y.; Gao, Y.; Liu, B.; Zhao, C. Facile preparation of triazole-functionalized poly(arylene perfluorophenyl) high temperature proton exchange membranes via para-fluoro-thiol click reaction with high radical resistance. Journal of Membrane Science 2023, 687, 122102. doi:10.1016/j.memsci.2023.122102
  • Balasooriya, Y.; Samarasekara, P.; Lim, C. M.; Chau, Y.-F. C.; Kooh, M. R. R.; Thotagamuge, R. Density Functional Theory Investigation of Temperature-Dependent Properties of Cu-Nitrogen-Doped Graphene as a Cathode Material in Fuel Cell Applications. Molecules (Basel, Switzerland) 2023, 28, 7873. doi:10.3390/molecules28237873
  • Ji, J.; Han, Y.; Xu, F.; Chu, F.; Li, Y.; Lin, B. Guanidinium/Hydroxyl-Functionalized Polybenzimidazole for High-Temperature Proton Exchange Membrane Fuel Cell Applications. ACS Applied Energy Materials 2023, 6, 11754–11761. doi:10.1021/acsaem.3c02471
  • Pereira, R. W.; Ramabhadran, R. O. Accurate Computation of Aqueous pKas of Biologically Relevant Organic Acids: Overcoming the Challenges Posed by Multiple Conformers, Tautomeric Equilibria, and Disparate Functional Groups with the Fully Black-Box pK-Yay Method. The journal of physical chemistry. A 2023, 127, 9121–9138. doi:10.1021/acs.jpca.3c02977
  • Shrestha, P.; Bazylak, A. Pursuit of next-generation electrochemical energy devices. Electrochimica Acta 2023, 464, 142810. doi:10.1016/j.electacta.2023.142810
  • Mishra, K.; Devi, N.; Siwal, S. S.; Thakur, V. K. Insight perspective on the synthesis and morphological role of the noble and non-noble metal-based electrocatalyst in fuel cell application. Applied Catalysis B: Environmental 2023, 334, 122820. doi:10.1016/j.apcatb.2023.122820
  • Li, J.; Yang, C.; Zhang, X.; Xia, Z.; Wang, S.; Yu, S.; Sun, G. Alkyl-substituted poly(arylene piperidinium) membranes enhancing the performance of high-temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry A 2023, 11, 18409–18418. doi:10.1039/d3ta02158k
  • Chun, H.; Kim, D.-H.; Jung, H.-S.; Sim, J.; Pak, C. Effects of gas-diffusion layer properties on the performance of the cathode for high-temperature polymer electrolyte membrane fuel cell. International Journal of Hydrogen Energy 2023, 48, 27790–27804. doi:10.1016/j.ijhydene.2023.03.416
  • He, J.; Li, T.; Liu, Y.; Wang, A.; Jiang, W.; Deng, C.; Hou, J.; Zhuang, X.; Zhang, J.; Ke, C. Study on Synthesis of Polybenzimidazole (PBI) Using Low Cost & High Impurity Industrial 3,3'-diaminobenzidine (DAB) for Application in High Temperature Proton Exchange Membrane Fuel Cells. Journal of The Electrochemical Society 2023, 170, 84510–084510. doi:10.1149/1945-7111/acef63
  • Seselj, N.; Alfaro, S. M.; Bompolaki, E.; Cleemann, L. N.; Torres, T.; Azizi, K. Catalyst Development for High-Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) Applications. Advanced materials (Deerfield Beach, Fla.) 2023, 35, e2302207. doi:10.1002/adma.202302207
  • Hatahet, M. H.; Bryja, H.; Lotnyk, A.; Wagner, M.; Abel, B. Ultra-Low Loading of Iron Oxide and Platinum on CVD-Graphene Composites as Effective Electrode Catalysts for Solid Acid Fuel Cells. Catalysts 2023, 13, 1154. doi:10.3390/catal13081154
  • Rony, F.; Lou, J.; Ilias, S. Application of nanoparticles in modified polybenzimidazole-based high temperature proton exchange membranes. Journal of Elastomers & Plastics 2023, 55, 1152–1170. doi:10.1177/00952443231189848
  • Seselj, N.; Aili, D.; Celenk, S.; Cleemann, L. N.; Hjuler, H. A.; Jensen, J. O.; Azizi, K.; Li, Q. Performance degradation and mitigation of high temperature polybenzimidazole-based polymer electrolyte membrane fuel cells. Chemical Society reviews 2023, 52, 4046–4070. doi:10.1039/d3cs00072a
  • Li, Y.; Fu, Z.; Li, Y.; Zhang, G. A Comparative Study of CCM and CCS Membrane Electrode Assemblies for High-Temperature Proton Exchange Membrane Fuel Cells with a CsH5(PO4)2-Doped Polybenzimidazole Membrane. Materials (Basel, Switzerland) 2023, 16, 3925. doi:10.3390/ma16113925
  • Shavelkina, M. B.; Ivanov, P. P.; Tuganov, V. N.; Valyano, G. E. The construction of water highways of a hydrophobized gas diffusion layer via polarization behavior. Journal of Applied Electrochemistry 2023, 53, 2125–2135. doi:10.1007/s10800-023-01914-y
Other Beilstein-Institut Open Science Activities