Transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons and the influence of the transformation strategies on the photocatalytic performance

Melita Rutar, Nejc Rozman, Matej Pregelj, Carla Bittencourt, Romana Cerc Korošec, Andrijana Sever Škapin, Aleš Mrzel, Srečo D. Škapin and Polona Umek
Beilstein J. Nanotechnol. 2015, 6, 831–844. https://doi.org/10.3762/bjnano.6.86

Supporting Information

Supporting Information File 1: SEM and TGA and DSC data for the precursor hydrogen titanate nanoribbons sample, XRD patterns, SEM and TEM images, XPS and optical absorbance spectra of selected TiO2 nanoribbon samples, and concentration profiles of isopropanol and acetone during the photocatalytic oxidation of isopropanol under UV–vis illumination.
Format: PDF Size: 993.3 KB Download

Cite the Following Article

Transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons and the influence of the transformation strategies on the photocatalytic performance
Melita Rutar, Nejc Rozman, Matej Pregelj, Carla Bittencourt, Romana Cerc Korošec, Andrijana Sever Škapin, Aleš Mrzel, Srečo D. Škapin and Polona Umek
Beilstein J. Nanotechnol. 2015, 6, 831–844. https://doi.org/10.3762/bjnano.6.86

How to Cite

Rutar, M.; Rozman, N.; Pregelj, M.; Bittencourt, C.; Cerc Korošec, R.; Sever Škapin, A.; Mrzel, A.; Škapin, S. D.; Umek, P. Beilstein J. Nanotechnol. 2015, 6, 831–844. doi:10.3762/bjnano.6.86

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Liu, T.; Miao, L.; Yao, F.; Zhang, W.; Zhao, W.; Yang, D.; Feng, Q.; Hu, D. Structure, Properties, Preparation, and Application of Layered Titanates. Inorganic chemistry 2023, 63, 1–26. doi:10.1021/acs.inorgchem.3c03075
  • Umek, P.; Dürrschnabel, M.; Molina-Luna, L.; Škapin, S.; Korošec, R. C.; Bittencourt, C. The Role of Cerium Valence in the Conversion Temperature of H2Ti3O7 Nanoribbons to TiO2-B and Anatase Nanoribbons, and Further to Rutile. Molecules (Basel, Switzerland) 2023, 28, 5838. doi:10.3390/molecules28155838
  • Wadge, M. D.; Bird, M. A.; Sankowski, A.; Constantin, H.; Fay, M. W.; Cooper, T. P.; O'Shea, J. N.; Khlobystov, A. N.; Walsh, D. A.; Johnson, L. R.; Felfel, R. M.; Ahmed, I.; Grant, D. M. Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response. Advanced Materials Interfaces 2022, 10. doi:10.1002/admi.202201523
  • Zhang, X.; Bo, C.; Cao, S.; Cheng, Z.; Xiao, Z.; Liu, X.; Tan, T.; Piao, L. Stability improvement of a Pt/TiO2 photocatalyst during photocatalytic pure water splitting. Journal of Materials Chemistry A 2022, 10, 24381–24387. doi:10.1039/d2ta06961j
  • Zhang, J.; Chen, H.; Liu, M.; Lu, T.; Gao, B.; Yang, X.; Zhou, L.; Li, H.; Su, Y. Base-assisted activation of phenols in TiO2 surface complex under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 2022, 431, 114005. doi:10.1016/j.jphotochem.2022.114005
  • Prakash, J.; Samriti; Kumar, A.; Dai, H.; Janegitz, B. C.; Krishnan, V.; Swart, H. C.; Sun, S. Novel rare earth metal–doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications. Materials Today Sustainability 2021, 13, 100066. doi:10.1016/j.mtsust.2021.100066
  • Mahmood, A.; Wang, X.; Xie, X.; Sun, J. Atomically Dispersed Pt on TiO2 Nanosheets for Catalytic Gaseous Acetaldehyde Abatement. ACS Applied Nano Materials 2021, 4, 3799–3810. doi:10.1021/acsanm.1c00208
  • Garvas, M.; Acosta, S.; Urbančič, I.; Koklic, T.; Štrancar, J.; de Oliveira Nunes, L. A.; Guttmann, P.; Umek, P.; Bittencourt, C. Single cell temperature probed by Eu+3 doped TiO2 nanoparticles luminescence. Nano Select 2021, 2, 1208–1217. doi:10.1002/nano.202000207
  • Kamal, N.; Zaki, A. H.; El-Shahawy, A. A. G.; Sayed, O. M.; El-Dek, S. Changing the morphology of one-dimensional titanate nanostructures affects its tissue distribution and toxicity. Toxicology and industrial health 2020, 36, 272–286. doi:10.1177/0748233720921693
  • Opra, D. P.; Gnedenkov, S. V.; Sinebryukhov, S. L. Recent efforts in design of TiO2(B) anodes for high-rate lithium-ion batteries: A review. Journal of Power Sources 2019, 442, 227225. doi:10.1016/j.jpowsour.2019.227225
  • Sluban, M.; Umek, P. Role of Water in the Transformation of Protonated Titanate Nanoribbons to Anatase Nanoribbons. The Journal of Physical Chemistry C 2019, 123, 23747–23757. doi:10.1021/acs.jpcc.9b08225
  • Wang, C.-T.; Lin, H.-S.; Wang, W.-P. Hydrothermal synthesis of Fe and Nb-doped titania nanobelts and their tunable electronic structure toward photovoltaic application. Materials Science in Semiconductor Processing 2019, 99, 85–91. doi:10.1016/j.mssp.2019.04.019
  • Thomas, J.; Ambili, K. S. Solar Light Active Nano-photocatalysts. Environmental Chemistry for a Sustainable World; Springer International Publishing, 2019; pp 185–218. doi:10.1007/978-3-030-04949-2_8
  • Radtke, A. Photocatalytic Activity of Nanostructured Titania Films Obtained by Electrochemical, Chemical, and Thermal Oxidation of Ti6Al4V Alloy—Comparative Analysis. Catalysts 2019, 9, 279. doi:10.3390/catal9030279
  • Matoh, L.; Žener, B.; Korošec, R. C.; Štangar, U. L. Photocatalytic water treatment. Nanotechnology in Eco-efficient Construction; Elsevier, 2019; pp 675–702. doi:10.1016/b978-0-08-102641-0.00027-x
  • Tao, Z.; Fang, H.; Chen, L.; Chen, J.; Xiu, X.; Zhang, R. Single phase c-oriented ε-Fe2∼3N film on Al2O3 grown by magnetron sputtering. Journal of Crystal Growth 2019, 506, 160–164. doi:10.1016/j.jcrysgro.2018.10.044
  • Bittencourt, C.; Werner, S.; Haebel, C.; Guttmann, P.; Sluban, M.; Umek, P.; Krüger, P. Nanoscale NEXAFS for Probing TiCh-B Nanoribbons. Microscopy and Microanalysis 2018, 24, 474–475. doi:10.1017/s1431927618014605
  • Tian, Z.; Wang, D.; Bu, K.; Lin, J.; Zhang, S.; Zhao, W.; Qin, P.; Huang, F. Highly Conductive Cable-Like Bicomponent Titania Photoanode Approaching Limitation of Electron and Hole Collection. Advanced Functional Materials 2018, 28, 1803328. doi:10.1002/adfm.201803328
  • Žener, B.; Matoh, L.; Carraro, G.; Miljević, B.; Korošec, R. C. Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination. Beilstein journal of nanotechnology 2018, 9, 1629–1640. doi:10.3762/bjnano.9.155
  • Ariyanti, D.; Mo'ungatonga, S.; Li, Y.; Gao, W. Formation of TiO 2 based nanoribbons and the effect of post-annealing on its photocatalytic activity. IOP Conference Series: Materials Science and Engineering 2018, 348, 012002. doi:10.1088/1757-899x/348/1/012002
Other Beilstein-Institut Open Science Activities