Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

Sini Kuriakose, D. K. Avasthi and Satyabrata Mohapatra
Beilstein J. Nanotechnol. 2015, 6, 928–937. https://doi.org/10.3762/bjnano.6.96

Cite the Following Article

Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method
Sini Kuriakose, D. K. Avasthi and Satyabrata Mohapatra
Beilstein J. Nanotechnol. 2015, 6, 928–937. https://doi.org/10.3762/bjnano.6.96

How to Cite

Kuriakose, S.; Avasthi, D. K.; Mohapatra, S. Beilstein J. Nanotechnol. 2015, 6, 928–937. doi:10.3762/bjnano.6.96

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ma, S.; Zhou, Z.; Zhang, Y.; Rao, R.; Han, H.; Liang, J.; Zhao, Z.; Bi, F.; Liu, N.; Zhang, X. Review of irradiation treatments on MOFs and COFs: Synthesis, modification, and application. Separation and Purification Technology 2024, 339, 126636. doi:10.1016/j.seppur.2024.126636
  • Kaur, J.; Rani, S. Metal oxides synthesized from potato peels for grow light. Journal of Optics 2023. doi:10.1007/s12596-023-01338-z
  • Rajyaguru, B.; Gadani, K.; Dhruv, D.; Ganesan, V.; Asokan, K.; Shah, N.; Solanki, P. Tunable resistive nature of LaMnO3 / Nd0.7Sr0.3MnO3 interfaces: Role of swift heavy ion irradiation. Ceramics International 2023, 49, 23912–23939. doi:10.1016/j.ceramint.2023.04.242
  • Dong, X.; Yu, X.; Zhang, X.; Zhang, Z.; He, X.; Wei, R.; Bai, Y.; Fan, J. Synthesis of Tb-doped ZnO/RGO nanocomposites and its enhanced photocatalytic activity under visible light irradiation. Diamond and Related Materials 2023, 133, 109765. doi:10.1016/j.diamond.2023.109765
  • Shanmugam, P.; Ngullie, R. C.; Meejoo Smith, S.; Boonyuen, S.; Boddula, R.; Pothu, R. Visible-light induced photocatalytic removal of methylene blue dye by copper oxide decorated zinc oxide nanorods. Materials Science for Energy Technologies 2023, 6, 359–367. doi:10.1016/j.mset.2023.03.001
  • Manohar, M. V.; Paladhi, A. G.; Jacob, S.; Vallinayagam, S. ZnO Nanocomposites in Dye Degradation. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry; Springer Nature Singapore, 2022; pp 317–341. doi:10.1007/978-981-19-0882-8_12
  • Wang, R.; Li, Q.; Yin, J.; Liu, Z.; Gao, L.; Jiao, T. Facile Preparation of Self-Assembled MXene-CeO2 Composite with High Dye Removal Performances. Integrated Ferroelectrics 2022, 227, 110–120. doi:10.1080/10584587.2022.2065578
  • Gupta, D.; Chauhan, V.; Koratkar, N.; Kumar, R. Electronic structure engineering of 2-D MoS2 sputtered thin films under ion beam irradiation: Induced by controlled defect generation. Ceramics International 2022, 48, 2999–3019. doi:10.1016/j.ceramint.2021.08.070
  • Villaseñor-Basulto, D. L.; Bandala, E. R.; Ramirez, I.; Rodriguez-Narvaez, O. M. Synthesis and photocatalytic applications of Cu O/ZnO in environmental remediation. Sustainable Nanotechnology for Environmental Remediation; Elsevier, 2022; pp 397–433. doi:10.1016/b978-0-12-824547-7.00026-6
  • Kalaiarasi, J.; Pragathiswaran, C.; Subramani, P. Green chemistry approach for the functionalization of reduced graphene and ZnO as efficient supercapacitor application. Journal of Molecular Structure 2021, 1242, 130704. doi:10.1016/j.molstruc.2021.130704
  • Gangwar, J.; Joseph, K. S. Unlocking the potential of biosynthesized zinc oxide nanoparticles for degradation of synthetic organic dyes as wastewater pollutants. Water science and technology : a journal of the International Association on Water Pollution Research 2021, 84, 3286–3310. doi:10.2166/wst.2021.430
  • Sahu, K.; Khan, S. A.; Pandey, A.; Mohapatra, S. Thermal evolution of morphological, optical, and photocatalytic properties of Au–Cu2O–CuO nanocomposite thin film. Journal of Materials Science: Materials in Electronics 2021, 32, 24058–24068. doi:10.1007/s10854-021-06868-5
  • Gunawan; Haris, A.; Pratista, E. COPPER OXIDE THIN FILM SYNTHESIS, CHARACTERIZATION AND APPLICATION AS CATHODE IN PHOTOELECTROCATALYTIC CELL FOR METHYL ORANGE DEGRADATION. International Journal of Engineering Technologies and Management Research 2021, 8, 86–98. doi:10.29121/ijetmr.v8.i6.2021.979
  • Sandhya, J.; Kalaiselvam, S. UV responsive quercetin derived and functionalized CuO/ZnO nanocomposite in ameliorating photocatalytic degradation of rhodamine B dye and enhanced biocidal activity against selected pathogenic strains. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering 2021, 56, 835–848. doi:10.1080/10934529.2021.1930770
  • Mahmood, N.; Khan, H.; Tran, K.; Kuppe, P.; Zavabeti, A.; Atkin, P.; Ghasemian, M. B.; Yang, J.; Xu, C.; Tawfik, S. A.; Spencer, M. J. S.; Ou, J. Z.; Khoshmanesh, K.; McConville, C. F.; Li, Y.; Kalantar-zadeh, K. Maximum piezoelectricity in a few unit-cell thick planar ZnO – A liquid metal-based synthesis approach. Materials Today 2021, 44, 69–77. doi:10.1016/j.mattod.2020.11.016
  • Krishna, R.; Agarwal, D. C.; Avasthi, D. Synthesis and modification of ZnO thin films by energetic ion beams. Radiation Effects and Defects in Solids 2021, 176, 145–166. doi:10.1080/10420150.2021.1891065
  • Pragathiswaran, C.; Smitha, C.; Abbubakkar, B. M.; Govindhan, P.; Krishnan, N. A. Synthesis and characterization of TiO2/ZnO–Ag nanocomposite for photocatalytic degradation of dyes and anti-microbial activity. Materials Today: Proceedings 2021, 45, 3357–3364. doi:10.1016/j.matpr.2020.12.664
  • Narasimman, S.; Balakrishnan, L.; Alex, Z. C. Clad-modified fiber optic ammonia sensor based on Cu functionalized ZnO nanoflakes. Sensors and Actuators A: Physical 2020, 316, 112374. doi:10.1016/j.sna.2020.112374
  • Kaur, R.; Suresh, M.; López-Vidrier, J.; Gutsch, S.; Weiss, C.; Prescher, M.; Kirste, L.; Singh, R.; Pal, B.; Zacharias, M. In situ approach to fabricate heterojunction p–n CuO–ZnO nanostructures for efficient photocatalytic reactions. New Journal of Chemistry 2020, 44, 19742–19752. doi:10.1039/d0nj03770b
  • Sahu, K.; Pandey, A.; Mohapatra, S. Cu–CuO and Cu–CuO–ZnO hybrid nanostructures as photocatalysts and catalysts for efficient removal of pollutants. Applied Physics A 2020, 126, 1–11. doi:10.1007/s00339-020-04078-0
Other Beilstein-Institut Open Science Activities