Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles

Tomasz Tański, Wiktor Matysiak and Barbara Hajduk
Beilstein J. Nanotechnol. 2016, 7, 1141–1155. https://doi.org/10.3762/bjnano.7.106

Cite the Following Article

Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles
Tomasz Tański, Wiktor Matysiak and Barbara Hajduk
Beilstein J. Nanotechnol. 2016, 7, 1141–1155. https://doi.org/10.3762/bjnano.7.106

How to Cite

Tański, T.; Matysiak, W.; Hajduk, B. Beilstein J. Nanotechnol. 2016, 7, 1141–1155. doi:10.3762/bjnano.7.106

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.1 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Pujiarti, H.; Ramadhani, A. N.; Arimbi, N. H.; Diantoro, M.; Afandi, A. N.; Nasikhudin. Effect of Polyacriontrile (PAN) Concentration on Characteristics and Performance of TiO2/N719/PAN-rGO for Dye-Sensitized Solar Cells. Proceedings of the 2nd International Conference on Science Education and Sciences 2022 (ICSES 2022); Atlantis Press International BV, 2023; pp 74–85. doi:10.2991/978-94-6463-232-3_9
  • Abdelmaksoud, M.; Mohamed, A.; Sayed, A.; Khairy, S. A. Physical Properties of PVDF-GO/Black-TiO2 Nanofibers and its Photocatalytic Degradation of Methylene Blue and Malachite Green Dyes. Environmental science and pollution research international 2021, 28, 30613–30625. doi:10.1007/s11356-021-12618-1
  • Kim, H.; McSherry, S.; Brown, B.; Lenert, A. Selectively Enhancing Solar Scattering for Direct Radiative Cooling through Control of Polymer Nanofiber Morphology. ACS applied materials & interfaces 2020, 12, 43553–43559. doi:10.1021/acsami.0c09374
  • Bonaccorsi, L.; Fotia, A.; Malara, A.; Frontera, P. Advanced Adsorbent Materials for Waste Energy Recovery. Energies 2020, 13, 4299. doi:10.3390/en13174299
  • Mpukuta, O. M.; Dincer, K.; Ozaytekin, I. Effect of Dynamic Viscosity on Nanofiber Diameters and Electrical Conductivity of Polyacrylonitrile Nanofibers Doped Nano-Cu Particles. International Journal of Innovative Engineering Applications 2020, 4, 1–8. doi:10.46460/ijiea.707142
  • Fanta, G. M.; Jarka, P.; Szeluga, U.; Tański, T.; Kim, J. Y. Phase Diagrams of n-Type Low Bandgap Naphthalenediimide-Bithiophene Copolymer Solutions and Blends. Polymers 2019, 11, 1474. doi:10.3390/polym11091474
  • Matysiak, W.; Tański, T. Analysis of the morphology, structure and optical properties of 1D SiO2 nanostructures obtained with sol-gel and electrospinning methods. Applied Surface Science 2019, 489, 34–43. doi:10.1016/j.apsusc.2019.05.090
  • Matysiak, W.; Tański, T.; Smok, W. Electrospinning as a Versatile Method of Composite Thin Films Fabrication for Selected Applications. Solid State Phenomena 2019, 293, 35–49. doi:10.4028/www.scientific.net/ssp.293.35
  • Duńvki, T.; Saryviak, V. Analysis and characterization of SiO2 nanowires via electrospinning technique. Experimental and Theoretical NANOTECHNOLOGY 2019, 269–280. doi:10.56053/3.3.269
  • Matysiak, W.; Tański, T. Novel bimodal ZnO (amorphous)/ZnO NPs (crystalline) electrospun 1D nanostructure and their optical characteristic. Applied Surface Science 2019, 474, 232–242. doi:10.1016/j.apsusc.2018.02.217
  • Sa'adah, U.; Himmah, S. W.; Suprayogi, T.; Diantoro, M.; Sujito, S.; Nasikhudin, N. The Effect of Time Deposition of PAN/TiO2 Electrospun on Photocurrent Performance of Dye-Sensitized Solar Cell. Materials Today: Proceedings 2019, 13, 175–180. doi:10.1016/j.matpr.2019.03.210
  • Matysiak, W.; Tański, T. Analysis of the morphology, structure and optical properties of SiO2 nanowires obtained by the electrospinning method. Materials Today: Proceedings 2019, 7, 382–388. doi:10.1016/j.matpr.2018.11.099
  • Matysiak, W.; Tański, T.; Zaborowska, M. Electrospinning process and characterization of PVP/hematite nanofibers. IOP Conference Series: Materials Science and Engineering 2018, 461, 012050. doi:10.1088/1757-899x/461/1/012050
  • Jahng, J.; Yang, H.; Lee, E. S. Substructure imaging of heterogeneous nanomaterials with enhanced refractive index contrast by using a functionalized tip in photoinduced force microscopy. Light, science & applications 2018, 7, 73. doi:10.1038/s41377-018-0069-y
  • Nowak, M.; Kępińska, M.; Tański, T.; Matysiak, W.; Szperlich, P.; Stróż, D. Optical properties of nanocomposite fibrous polymer mats containing SbSeI nanowires. Optical Materials 2018, 84, 383–388. doi:10.1016/j.optmat.2018.07.012
  • Matysiak, W.; Tański, T.; Jarka, P.; Nowak, M.; Kępińska, M.; Szperlich, P. Comparison of optical properties of PAN/TiO2, PAN/Bi2O3, and PAN/SbSI nanofibers. Optical Materials 2018, 83, 145–151. doi:10.1016/j.optmat.2018.05.055
  • Matysiak, W.; Tański, T.; Zaborowska, M. Manufacturing process, characterization and optical investigation of amorphous 1D zinc oxide nanostructures. Applied Surface Science 2018, 442, 382–389. doi:10.1016/j.apsusc.2018.01.041
  • Tański, T.; Matysiak, W. Synthesis of the Novel Type of Bimodal Ceramic Nanowires from Polymer and Composite Fibrous Mats. Nanomaterials (Basel, Switzerland) 2018, 8, 179. doi:10.3390/nano8030179
  • Jarka, P.; Taski, T.; Matysiak, W.; Jarzbek, B.; Hajduk, B. Manufacture of photovoltaic cells with hybrid organic–inorganic bulk heterojunction. Materials and Manufacturing Processes 2018, 33, 912–922. doi:10.1080/10426914.2017.1415445
  • Maximean, D. M.; Danila, O.; Almeida, P.; Ganea, C. P. Electrical properties of a liquid crystal dispersed in an electrospun cellulose acetate network. Beilstein journal of nanotechnology 2018, 9, 155–163. doi:10.3762/bjnano.9.18
Other Beilstein-Institut Open Science Activities