Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas

Mario Hentschel, Bernd Metzger, Bastian Knabe, Karsten Buse and Harald Giessen
Beilstein J. Nanotechnol. 2016, 7, 111–120. https://doi.org/10.3762/bjnano.7.13

Cite the Following Article

Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas
Mario Hentschel, Bernd Metzger, Bastian Knabe, Karsten Buse and Harald Giessen
Beilstein J. Nanotechnol. 2016, 7, 111–120. https://doi.org/10.3762/bjnano.7.13

How to Cite

Hentschel, M.; Metzger, B.; Knabe, B.; Buse, K.; Giessen, H. Beilstein J. Nanotechnol. 2016, 7, 111–120. doi:10.3762/bjnano.7.13

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.5 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Tamtam, A.; Benyounis, K. Y.; Temtam, A.; Abusoua, A. Advancements in network sensor optics via add-drop filter modification. Comprehensive Materials Processing; Elsevier, 2024; pp 208–215. doi:10.1016/b978-0-323-96020-5.00180-1
  • Camacho Morales, R.; Zangeneh Kamali, K.; Xu, L.; Miroshnichenko, A.; Rahmani, M.; Neshev, D. Nonlinear phenomena empowered by resonant dielectric nanostructures. All-Dielectric Nanophotonics; Elsevier, 2024; pp 329–364. doi:10.1016/b978-0-32-395195-1.00016-8
  • Bredillet, K.; Behel, Z.; Taitt, R.; Urbain, M.; Randrianalisoa, J. H.; Beauquis, S.; Mugnier, Y.; Brevet, P.-F.; Le Dantec, R.; Chevolot, Y.; Monnier, V. Black Gold Plasmon Response of a Raspberry Shell Grown on Lithium Niobate Nonlinear Nanoparticles. The Journal of Physical Chemistry C 2023, 127, 22119–22128. doi:10.1021/acs.jpcc.3c04987
  • Das, S.; Sharma, U.; Mukherjee, B.; Sasikala Devi, A. A.; Velusamy, J. Polygonal gold nanocrystal induced efficient phase transition in 2D-MoS2for enhancing photo-electrocatalytic hydrogen generation. Nanotechnology 2023, 34, 145202. doi:10.1088/1361-6528/acade6
  • De Luca, F.; Ortolani, M.; Ciracì, C. Free electron harmonic generation in heavily doped semiconductors: the role of the materials properties. EPJ Applied Metamaterials 2022, 9, 13. doi:10.1051/epjam/2022011
  • Golovkina, M. V. Nanocomposite superconductors for low loss filter design. In PROCEEDINGS OF THE II INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS, SYSTEMS AND TECHNOLOGIES: (CAMSTech-II 2021), AIP Publishing, 2022. doi:10.1063/5.0093160
  • Gupta, T. D.; Martin-Monier, L.; Butet, J.; Yang, K.-Y.; Leber, A.; Dong, C.; Nguyen-Dang, T.; Yan, W.; Martin, O. J. F.; Sorin, F. Second harmonic generation in glass-based metasurfaces using tailored surface lattice resonances. Nanophotonics 2021, 10, 3465–3475. doi:10.1515/nanoph-2021-0277
  • Ray, D.; Kiselev, A.; Martin, O. J. F. Multipolar scattering analysis of hybrid metal-dielectric nanostructures. Optics express 2021, 29, 24056–24067. doi:10.1364/oe.427911
  • Ray, D.; Kiselev, A.; Martin, O. J. F. Multipolar scattering analysis of hybrid metal-dielectric nanostructures. 2021.
  • Taitt, R.; Urbain, M.; Behel, Z.; Pablo-Sainz-Ezquerra, A.-M.; Kandybka, I.; Millet, E.; Martinez-Rodriguez, N.; Yeromonahos, C.; Beauquis, S.; Le Dantec, R.; Mugnier, Y.; Brevet, P.-F.; Chevolot, Y.; Monnier, V. Gold-seeded Lithium Niobate Nanoparticles: Influence of Gold Surface Coverage on Second Harmonic Properties. Nanomaterials (Basel, Switzerland) 2021, 11, 950. doi:10.3390/nano11040950
  • Zhang, Y.; Min, C.; Dou, X.; Wang, X.; Urbach, H. P.; Somekh, M. G.; Yuan, X. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light, science & applications 2021, 10, 59. doi:10.1038/s41377-021-00474-0
  • De Luca, F.; Ortolani, M.; Ciracì, C. Free electron nonlinearities in heavily doped semiconductors plasmonics. Physical Review B 2021, 103, 115305. doi:10.1103/physrevb.103.115305
  • Shakhgil’dyan, G. Y.; Ziyatdinova, M. Z.; Vetchinnikov, M.; Lotarev, S. V.; Savinkov, V. I.; Presnyakova, N.; Lopatina, E.; Vilkovisky, G.; Sigaev, V. N. Thermally-induced precipitation of gold nanoparticles in phosphate glass: effect on the optical properties of Er3+ ions. Journal of Non-Crystalline Solids 2020, 550, 120408. doi:10.1016/j.jnoncrysol.2020.120408
  • Noor, A.; Damodaran, A. R.; Lee, I. H.; Maier, S. A.; Oh, S. H.; Ciracì, C. Mode-Matching Enhancement of Second-Harmonic Generation with Plasmonic Nanopatch Antennas. ACS photonics 2020, 7, 3333–3340. doi:10.1021/acsphotonics.0c01545
  • Ray, D.; Raziman, T. V.; Santschi, C.; Etezadi, D.; Altug, H.; Martin, O. J. F. Hybrid Metal-Dielectric Metasurfaces for Refractive Index Sensing. Nano letters 2020, 20, 8752–8759. doi:10.1021/acs.nanolett.0c03613
  • Noor, A.; Damodaran, A. R.; Lee, I. H.; Maier, S. A.; Oh, S. H.; Ciracì, C. Mode-matching enhancement of second-harmonic generation with plasmonic nanopatch antennas. 2020.
  • Gerislioglu, B.; Bakan, G.; Ahuja, R.; Adam, J.; Mishra, Y. K.; Ahmadivand, A. The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. Materials Today Physics 2020, 12, 100178. doi:10.1016/j.mtphys.2020.100178
  • Garrido, V. Q.; Gonçalves, J. M.; Rocha, J. C.; Bastos, E. L.; Toma, H. E.; de Moraes Zamarion, V. Intriguing Plasmonic and Fluorescence Duality in Copper Nanoparticles. Plasmonics 2020, 15, 1213–1219. doi:10.1007/s11468-020-01143-5
  • Chauvet, N.; de Corny, M. E.; Jeannin, M.; Laurent, G.; Huant, S.; Gacoin, T.; Dantelle, G.; Nogues, G.; Bachelier, G. Hybrid KTP–Plasmonic Nanostructures for Enhanced Nonlinear Optics at the Nanoscale. ACS Photonics 2020, 7, 665–672. doi:10.1021/acsphotonics.9b01484
  • Fujiwara, H.; Suzuki, T.; Pin, C.; Sasaki, K. Localized ZnO Growth on a Gold Nanoantenna by Plasmon-Assisted Hydrothermal Synthesis. Nano letters 2019, 20, 389–394. doi:10.1021/acs.nanolett.9b04073
Other Beilstein-Institut Open Science Activities