A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors

Vardan Galstyan, Elisabetta Comini, Iskandar Kholmanov, Andrea Ponzoni, Veronica Sberveglieri, Nicola Poli, Guido Faglia and Giorgio Sberveglieri
Beilstein J. Nanotechnol. 2016, 7, 1421–1427. https://doi.org/10.3762/bjnano.7.133

Cite the Following Article

A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors
Vardan Galstyan, Elisabetta Comini, Iskandar Kholmanov, Andrea Ponzoni, Veronica Sberveglieri, Nicola Poli, Guido Faglia and Giorgio Sberveglieri
Beilstein J. Nanotechnol. 2016, 7, 1421–1427. https://doi.org/10.3762/bjnano.7.133

How to Cite

Galstyan, V.; Comini, E.; Kholmanov, I.; Ponzoni, A.; Sberveglieri, V.; Poli, N.; Faglia, G.; Sberveglieri, G. Beilstein J. Nanotechnol. 2016, 7, 1421–1427. doi:10.3762/bjnano.7.133

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.9 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhang, Y.; Xu, L.; Chen, J.; Bai, X.; Zhou, X. High sensitivity detection of ethanol solution based on waveguide resonant cavity combined with metamaterials. Measurement 2024, 225, 114030. doi:10.1016/j.measurement.2023.114030
  • Kamyab, H.; Chelliapan, S.; Hayder, G.; Yusuf, M.; Taheri, M. M.; Rezania, S.; Hasan, M.; Yadav, K. K.; Khorami, M.; Farajnezhad, M.; Nouri, J. Exploring the potential of metal and metal oxide nanomaterials for sustainable water and wastewater treatment: A review of their antimicrobial properties. Chemosphere 2023, 335, 139103. doi:10.1016/j.chemosphere.2023.139103
  • Wang, Z.; Bu, M.; Hu, N.; Zhao, L. An overview on room-temperature chemiresistor gas sensors based on 2D materials: Research status and challenge. Composites Part B: Engineering 2023, 248, 110378. doi:10.1016/j.compositesb.2022.110378
  • Daneshnazar, M.; Jaleh, B.; Eslamipanah, M.; Varma, R. S. Optical and gas sensing properties of TiO2/RGO for methanol, ethanol and acetone vapors. Inorganic Chemistry Communications 2022, 145, 110014. doi:10.1016/j.inoche.2022.110014
  • Bal, M.; Tümer, M.; Köse, M. Synthesis of reduced graphene oxide-based hybrid compounds and investigation of their sensing behavior against some nitroaromatic explosives. Materials Chemistry and Physics 2022, 289, 126480. doi:10.1016/j.matchemphys.2022.126480
  • Tripathi, D.; Chauhan, P. Highly Responsive and Room-Temperature Operable Ethanol Gas Sensor Based on Thermally Reduced Graphene Oxide. ECS Journal of Solid State Science and Technology 2022, 11, 87002–087002. doi:10.1149/2162-8777/ac83ee
  • Bal, M.; Tümer, M.; Uruş, S. Heterocycled triazole and azomethine substituted multifunctional graphene based hybrid ligands: color and sensor properties. Journal of Materials Science: Materials in Electronics 2022, 33, 14001–14020. doi:10.1007/s10854-022-08331-5
  • Akshya, S.; Juliet, A. V. A computational study of a chemical gas sensor utilizing Pd-rGO composite on SnO2 thin film for the detection of NOx. Scientific reports 2021, 11, 970. doi:10.1038/s41598-020-78586-7
  • Galstyan, V. "Quantum dots: Perspectives in next-generation chemical gas sensors" ‒ A review. Analytica chimica acta 2021, 1152, 238192. doi:10.1016/j.aca.2020.12.067
  • Kusat, K.; Akgöl, S. Nanobiosensors: Usability of Imprinted Nanopolymers. Molecular Imprinting for Nanosensors and Other Sensing Applications; Elsevier, 2021; pp 163–202. doi:10.1016/b978-0-12-822117-4.00007-1
  • Faisal, M.; Rashed, A.; Abdullah, M.; Harraz, F. A.; Jalalah, M.; Al-Assiri, M. S. Efficient hydrazine electrochemical sensor based on PANI doped mesoporous SrTiO3 nanocomposite modified glassy carbon electrode. Journal of Electroanalytical Chemistry 2020, 879, 114805. doi:10.1016/j.jelechem.2020.114805
  • Nebol'sin, V.; Galstyan, V.; Silina, Y. E. Graphene oxide and its chemical nature: Multi-stage interactions between the oxygen and graphene. Surfaces and Interfaces 2020, 21, 100763. doi:10.1016/j.surfin.2020.100763
  • Pisarkiewicz, T.; Maziarz, W.; Małolepszy, A.; Stobinski, L.; Michon, D.; Rydosz, A. Multilayer Structure of Reduced Graphene Oxide and Copper Oxide as a Gas Sensor. Coatings 2020, 10, 1015. doi:10.3390/coatings10111015
  • Correa, M. G.; Martínez, F. B.; Vidal, C. P.; Streitt, C.; Escrig, J.; de Dicastillo, C. L. Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. Beilstein journal of nanotechnology 2020, 11, 1450–1469. doi:10.3762/bjnano.11.129
  • Kim, I.; Viswanathan, K.; Kasi, G.; Thanakkasaranee, S.; Sadeghi, K.; Seo, J. ZnO Nanostructures in Active Antibacterial Food Packaging: Preparation Methods, Antimicrobial Mechanisms, Safety Issues, Future Prospects, and Challenges. Food Reviews International 2020, 38, 537–565. doi:10.1080/87559129.2020.1737709
  • Kim, I. S.; Viswanathan, K.; Kasi, G.; Thanakkasaranee, S.; Sadeghi, K.; Seo, J. ZnO Nanostructures in Active Antibacterial Food Packaging: Preparation Methods, Antimicrobial Mechanisms, Safety Issues, Future Prospects, and Challenges. Food Reviews International 2020, 1–29.
  • Galstyan, V.; Kaur, N.; Zappa, D.; Núñez-Carmona, E.; Sberveglieri, V.; Comini, E. Chemical Gas Sensors Studied at SENSOR Lab, Brescia (Italy): From Conventional to Energy-Efficient and Biocompatible Composite Structures. Sensors (Basel, Switzerland) 2020, 20, 579. doi:10.3390/s20030579
  • Abdullah, M.; Singh, P.; Ikram, S. Recent developments in nanostructured metal oxide-based electrochemical sensors. Nanofabrication for Smart Nanosensor Applications; Elsevier, 2020; pp 123–134. doi:10.1016/b978-0-12-820702-4.00005-2
  • Maduraiveeran, G.; Jin, W. Functional nanomaterial-derived electrochemical sensor and biosensor platforms for biomedical applications. Handbook of Nanomaterials in Analytical Chemistry; Elsevier, 2020; pp 297–327. doi:10.1016/b978-0-12-816699-4.00012-8
  • Wu, K.; Luo, Y.; Li, Y.; Zhang, C. Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors. Beilstein journal of nanotechnology 2019, 10, 2516–2526. doi:10.3762/bjnano.10.242

Patents

  • JAVANMARD MEHDI; GHOLIZADEH AZAM; CHHOWALLA MANISH; LAUMBACH ROBERT J; KIPEN HOWARD M; WEISEL CLIFFORD P; GOW ANDREW J; VOIRY DAMIEN. Quantification of inflammatory molecules in exhaled breath condensate using differential pulse voltammetry on reduced graphene oxide sensor. US 10670580 B2, June 2, 2020.
Other Beilstein-Institut Open Science Activities