Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

Ivan Shtepliuk, Jens Eriksson, Volodymyr Khranovskyy, Tihomir Iakimov, Anita Lloyd Spetz and Rositsa Yakimova
Beilstein J. Nanotechnol. 2016, 7, 1800–1814. https://doi.org/10.3762/bjnano.7.173

Cite the Following Article

Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals
Ivan Shtepliuk, Jens Eriksson, Volodymyr Khranovskyy, Tihomir Iakimov, Anita Lloyd Spetz and Rositsa Yakimova
Beilstein J. Nanotechnol. 2016, 7, 1800–1814. https://doi.org/10.3762/bjnano.7.173

How to Cite

Shtepliuk, I.; Eriksson, J.; Khranovskyy, V.; Iakimov, T.; Lloyd Spetz, A.; Yakimova, R. Beilstein J. Nanotechnol. 2016, 7, 1800–1814. doi:10.3762/bjnano.7.173

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1016.7 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ahmed, M. T.; Roy, D.; Roman, A. A.; Islam, S.; Ahmed, F. A first-principles investigation of Cr adsorption on C8 and B4N4 nanocages in aqueous mediums. Physical chemistry chemical physics : PCCP 2023, 25, 32261–32272. doi:10.1039/d3cp04225a
  • Wu, J.; Li, X.; Huang, L.; Liang, T.; Xing, X.; Luo, A. SnSe Monolayer-Based heavy metal sensors with high Sensitivity, Selectivity, and Reusability: Insights from first principle calculation. Results in Physics 2023, 53, 106973. doi:10.1016/j.rinp.2023.106973
  • Wu, J.; Li, X.; Liao, H.; Xue, S.; Huang, L.; Xing, X.; Luo, A. SnS monolayers based heavy metal sensors: DFT and NEGF analysis. Results in Physics 2023, 51, 106704. doi:10.1016/j.rinp.2023.106704
  • Jehad, A. K.; Fidan, M.; Ünverdi, Ö.; Çelebi, C. CVD graphene/SiC UV photodetector with enhanced spectral responsivity and response speed. Sensors and Actuators A: Physical 2023, 355, 114309. doi:10.1016/j.sna.2023.114309
  • Iqbal, N.; Zhang, S.; Wang, S.; Fang, Z.; Hu, Y.; Dang, Y.; Zhang, M.; Jin, Y.; Xu, J.; Ju, B.; Ma, Y. Measuring Near-Field Radiative Heat Transfer in a Graphene- SiC Heterostructure. Physical Review Applied 2023, 19. doi:10.1103/physrevapplied.19.024019
  • Haque, S. u.; Umar, M. F.; Chukwuma, O. B.; Rafatullah, M. Graphene quantum dots for heavy metal detection and removal. Graphene Quantum Dots; Elsevier, 2023; pp 157–181. doi:10.1016/b978-0-323-85721-5.00007-8
  • Alam, Q.; Idrees, M.; Muhammad, S.; Amin, B. MSSe-N2CO2 (M = Mo, W and N = Zr, Hf) van der Waals heterostructures; A first principles study. Chemical Physics 2022, 561, 111607. doi:10.1016/j.chemphys.2022.111607
  • Srivastava, M.; Srivastava, A. First principle investigation of boron functionalized graphene to detect the presence of “arsenic” in water. Materials Today: Proceedings 2022, 48, 661–665. doi:10.1016/j.matpr.2021.07.147
  • Davydov, S. Y.; Posrednik, O. V. The Role of Coulomb Interaction in the Defect Model of a Schottky Barrier. Technical Physics Letters 2021, 47, 234–236. doi:10.1134/s1063785021030081
  • Shtepliuk, I.; Yakimova, R. Interaction of H and Li with epitaxial graphene on SiC: A comparative analysis by first principles study. Applied Surface Science 2021, 568, 150988. doi:10.1016/j.apsusc.2021.150988
  • Shtepliuk, I.; Giannazzo, F.; Yakimova, R. Epitaxial Graphene on 4H-SiC (0001) as a Versatile Platform for Materials Growth: Mini-Review. Applied Sciences 2021, 11, 5784. doi:10.3390/app11135784
  • Idrees, M.; Fawad, M.; Bilal, M.; Saeed, Y.; Nguyen, C. Q.; Amin, B. Van der Waals heterostructures of SiC and Janus MSSe (M = Mo, W) monolayers: a first principles study. RSC advances 2020, 10, 25801–25807. doi:10.1039/d0ra04433d
  • Srivastava, M.; Srivastava, A.; Pandey, S. Suitability of graphene monolayer as sensor for carcinogenic heavy metals in water: A DFT investigation. Applied Surface Science 2020, 517, 146021. doi:10.1016/j.apsusc.2020.146021
  • Andersson, M.; Spetz, A. L.; Puglisi, D. Recent progress in silicon carbide field effect gas sensors. Semiconductor Gas Sensors; Elsevier, 2020; pp 309–346. doi:10.1016/b978-0-08-102559-8.00010-0
  • Ghenaatian, H. R.; Shakourian-Fard, M.; Moghadam, M. R.; Kamath, G.; Rahmanian, M. Tailoring of graphene quantum dots for toxic heavy metals detection. Applied Physics A 2019, 125, 1–12. doi:10.1007/s00339-019-3042-6
  • Gruschwitz, M.; Schletter, H.; Schulze, S.; Alexandrou, I.; Tegenkamp, C. Epitaxial graphene on 6 H – SiC ( 0001 ) : Defects in SiC investigated by STEM. Physical Review Materials 2019, 3, 094004. doi:10.1103/physrevmaterials.3.094004
  • Ghenaatian, H. R.; Shakourian-Fard, M.; Kamath, G. The effect of sulfur and nitrogen/sulfur co-doping in graphene surface on the adsorption of toxic heavy metals (Cd, Hg, Pb). Journal of Materials Science 2019, 54, 13175–13189. doi:10.1007/s10853-019-03791-3
  • Santangelo, M. F.; Shtepliuk, I.; Filippini, D.; Ivanov, I. G.; Yakimova, R.; Eriksson, J. Real-time sensing of lead with epitaxial graphene-integrated microfluidic devices. Sensors and Actuators B: Chemical 2019, 288, 425–431. doi:10.1016/j.snb.2019.03.021
  • Shtepliuk, I.; Yakimova, R. Interaction of epitaxial graphene with heavy metals: towards novel sensing platform. Nanotechnology 2019, 30, 294002. doi:10.1088/1361-6528/ab1546
  • Sun, C.; Cai, W.; Hong, R.; Cai, J.; Wu, Z. Characteristics of graphene/4H-SiC/graphene photodetector based on hydrogenated multilayer-graphene electrode. Journal of Nanophotonics 2019, 13, 016013. doi:10.1117/1.jnp.13.016013

Patents

  • RAN JUNXUE; WEI TONGBO; WANG JUNXI. Schottky diode and preparation method thereof. CN 109004018 A, Dec 14, 2018.
Other Beilstein-Institut Open Science Activities