Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling

Nadezhda M. Zholobak, Anton L. Popov, Alexander B. Shcherbakov, Nelly R. Popova, Mykhailo M. Guzyk, Valeriy P. Antonovich, Alla V. Yegorova, Yuliya V. Scrypynets, Inna I. Leonenko, Alexander Ye. Baranchikov and Vladimir K. Ivanov
Beilstein J. Nanotechnol. 2016, 7, 1905–1917. https://doi.org/10.3762/bjnano.7.182

Supporting Information

Supporting Information File 1: Additional pictures and experimental data.
Format: PDF Size: 2.0 MB Download

Cite the Following Article

Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling
Nadezhda M. Zholobak, Anton L. Popov, Alexander B. Shcherbakov, Nelly R. Popova, Mykhailo M. Guzyk, Valeriy P. Antonovich, Alla V. Yegorova, Yuliya V. Scrypynets, Inna I. Leonenko, Alexander Ye. Baranchikov and Vladimir K. Ivanov
Beilstein J. Nanotechnol. 2016, 7, 1905–1917. https://doi.org/10.3762/bjnano.7.182

How to Cite

Zholobak, N. M.; Popov, A. L.; Shcherbakov, A. B.; Popova, N. R.; Guzyk, M. M.; Antonovich, V. P.; Yegorova, A. V.; Scrypynets, Y. V.; Leonenko, I. I.; Baranchikov, A. Y.; Ivanov, V. K. Beilstein J. Nanotechnol. 2016, 7, 1905–1917. doi:10.3762/bjnano.7.182

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 938.4 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Patel, H. P.; Desai, P. H.; Patel, R. V.; Lodha, S. N.; Gore, A. H.; Patil, P. O.; Desai, B. V.; Desai, D. T.; Vyas, B. A.; Willcox, M. D. P.; Maulvi, F. A. Clozapine-laden carbon dots delivered to the brain via an intranasal pathway: Synthesis, characterization, ex vivo, and in vivo studies. Colloids and surfaces. B, Biointerfaces 2024, 237, 113862. doi:10.1016/j.colsurfb.2024.113862
  • Giang, T. P. L.; Nguyen, N. S.; Dao, H. T.; Dang, Q. K.; Tran, T. Q. Boosting Degradation of Synthetic Dye and Pesticide Residues in Water Using NCDs/FeNH2BDC Photocatalysts. Topics in Catalysis 2024. doi:10.1007/s11244-023-01900-w
  • Kuznietsova, H.; Dziubenko, N.; Paliienko, K.; Pozdnyakova, N.; Krisanova, N.; Pastukhov, A.; Lysenko, T.; Dudarenko, M.; Skryshevsky, V.; Lysenko, V.; Borisova, T. A comparative multi-level toxicity assessment of carbon-based Gd-free dots and Gd-doped nanohybrids from coffee waste: hematology, biochemistry, histopathology and neurobiology study. Scientific reports 2023, 13, 9306. doi:10.1038/s41598-023-36496-4
  • Wang, D.; Chen, Y.; Xia, T.; Claudino, M.; Melendez, A.; Ni, X.; Dong, C.; Liu, Z.; Yang, J. Citric Acid-Based Intrinsic Band-Shifting Photoluminescent Materials. Research (Washington, D.C.) 2023, 6, 0152. doi:10.34133/research.0152
  • Gowtham, P.; Harini, K.; Thirumalai, A.; Pallavi, P.; Girigoswami, K.; Girigoswami, A. Synthetic routes to theranostic applications of carbon-based quantum dots. ADMET & DMPK 2023, 11, 457. doi:10.5599/admet.1747
  • Bezuneh, T. T.; Fereja, T. H.; Li, H.; Jin, Y. Solid-Phase Pyrolysis Synthesis of Highly Fluorescent Nitrogen/Sulfur Codoped Graphene Quantum Dots for Selective and Sensitive Diversity Detection of Cr(VI). Langmuir : the ACS journal of surfaces and colloids 2023, 39, 1538–1547. doi:10.1021/acs.langmuir.2c02966
  • Vallan, L.; Imahori, H. Citric Acid-Based Carbon Dots and Their Application in Energy Conversion. ACS Applied Electronic Materials 2022, 4, 4231–4257. doi:10.1021/acsaelm.2c01021
  • Kazaryan, S. A.; Nevolin, V. N.; Pilosyan, S. K. Solvatochromic Effects in Absorption and Luminescence Spectra and Stability of the Emission Quantum Yield of Carbon Nanoparticles: Part I. Inorganic Materials: Applied Research 2022, 13, 247–262. doi:10.1134/s2075113322020198
  • Kazaryan, S. A.; Nevolin, V. N.; Pilosyan, S. K. Solvatochromic Effects in Absorption and Luminescence Spectra and Stability of the Emission Quantum Yield of Carbon Nanoparticles: Part II. Inorganic Materials: Applied Research 2022, 13, 263–276. doi:10.1134/s2075113322020204
  • Olla, C.; Porcu, S.; Secci, F.; Ricci, P. C.; Carbonaro, C. M. Towards N-N-Doped Carbon Dots: A Combined Computational and Experimental Investigation. Materials (Basel, Switzerland) 2022, 15, 1468. doi:10.3390/ma15041468
  • Bochkova, O.; Dovjenko, A.; Zairov, R.; Kholin, K.; Biktimirova, R.; Fedorenko, S.; Nizameev, I.; Laskin, A.; Voloshina, A.; Lyubina, A.; Amerhanova, S.; Daminova, A.; Evtugyn, V.; Gerasimova, T.; Mustafina, A. Silica-Supported Assemblage of CuII Ions with Carbon Dots for Self-Boosting and Glutathione-Induced ROS Generation. Coatings 2022, 12, 97. doi:10.3390/coatings12010097
  • Kaushal, N.; Sharma, A. L.; Saha, A. Visible LED based photo-redox properties of sulphur and nitrogen doped carbon dots designed by solid-state synthesis. Materials Advances 2022, 3, 355–361. doi:10.1039/d1ma00860a
  • Wen, R.; Li, Q.-H.; Li, Y.-S.; Luo, Y.-X.; Zhao, X.; Gao, X.-F. Synthesis optimization of rich-urea carbon-dots and application in the determination of H2S in rich- and barren-liquids of desulphurizing solutions. The Analyst 2021, 146, 7635–7644. doi:10.1039/d1an01851e
  • Nguyen, N. T.; Nguyen, X. T.; Nguyen, D.-T.; Tran, H. M.; Nguyen, T. M.; Tran, T. Q. Effect of Nitrogen-Doped Carbon Dots (NCDs) on the Characteristics of NCD/MIL-53(Fe) Composite and Its Photocatalytic Performance for Methylene Blue Degradation under Visible Light. Adsorption Science & Technology 2021, 2021, 1–13. doi:10.1155/2021/5906248
  • Ivanov, I.; Zaderko, A. N.; Lysenko, V.; Clopeau, T.; Lisnyak, V. V.; Skryshevsky, V. A. Photoluminescent Recognition of Strong Alcoholic Beverages with Carbon Nanoparticles. ACS omega 2021, 6, 18802–18810. doi:10.1021/acsomega.1c01953
  • Popova, N. P.; Taran, G. S.; Popov, A.; Kolmanovich, D. D.; Baranchikov, A. E.; Sorokina, S. S.; Zhizhin, K. Y.; Ivanov, V. Selective Radiosensitizing Effect of Amorphous Hafnia Modified with Organic Quantum Dots on Normal and Malignant Cells. Russian Journal of Inorganic Chemistry 2021, 66, 931–937. doi:10.1134/s0036023621060164
  • Stachowska, J.; Murphy, A.; Mellor, C. L.; Fernandes, D.; Gibbons, E. N.; Krysmann, M. J.; Kelarakis, A.; Burgaz, E.; Moore, J.; Yeates, S. G. A rich gallery of carbon dots based photoluminescent suspensions and powders derived by citric acid/urea. Scientific reports 2021, 11, 10554. doi:10.1038/s41598-021-89984-w
  • Dastidar, D. G.; Mukherjee, P.; Ghosh, D.; Banerjee, D. Carbon quantum dots prepared from onion extract as fluorescence turn-on probes for selective estimation of Zn2+ in blood plasma. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 611, 125781. doi:10.1016/j.colsurfa.2020.125781
  • Dezfuli, A. S.; Kohan, E.; Fateh, S. T.; Alimirzaei, N.; Arzaghi, H.; Hamblin, M. R. Organic dots (O-dots) for theranostic applications: preparation and surface engineering. RSC advances 2021, 11, 2253–2291. doi:10.1039/d0ra08041a
  • Zhang, K.; Ma, G.; Wang, H.; Liang, Z.; Zhou, L.; Yan, B. Protamine assisted rapid synthesis of carbon dots for living nucleolus imaging and gene delivery applications. Journal of Materials Science 2020, 56, 4396–4406. doi:10.1007/s10853-020-05526-1

Patents

  • DUBOVIK ALEKSEJ YUREVICH; KURSHANOV DANIL ALEKSANDROVICH; ROGACH ANDREJ; AREFINA IRINA ALEKSANDROVNA. METHOD FOR MANUFACTURING INDICATOR MICROCAPSULES USING MAGNETIC AND PLASMON NANOPARTICLES. RU 2758098 C1, Oct 26, 2021.
  • ZADERKO ALEXANDER. THE PROCESS FOR OBTAINING OF FLUORALKYLATED CARBON QUANTUM DOTS. WO 2020121119 A1, June 18, 2020.
Other Beilstein-Institut Open Science Activities