Cite the Following Article
Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications
Marwa Akkari, Pilar Aranda, Abdessalem Ben Haj Amara and Eduardo Ruiz-Hitzky
Beilstein J. Nanotechnol. 2016, 7, 1971–1982.
https://doi.org/10.3762/bjnano.7.188
How to Cite
Akkari, M.; Aranda, P.; Ben Haj Amara, A.; Ruiz-Hitzky, E. Beilstein J. Nanotechnol. 2016, 7, 1971–1982. doi:10.3762/bjnano.7.188
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.3 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Jemai, R.; Chalghaf, R.; Boubakri, S.; Amine Djebbi, M.; Naamen, S.; Ben Rhaiem, H.; Ben Haj Amara, A. Montmorillonite: Properties, Characteristics, and Its Harnessing in Environmental Applications. Recent Advances in Montmorillonite; IntechOpen, 2024. doi:10.5772/intechopen.1004763
- Baldez, W. M.; Santos, J. D.; Santos, W. D.; Aguilar-Pliego, J.; Martín, N.; Cabral, A. A.; Paiva, A. E.; Rodrigues, S. F.; Teixeira, M. M.; Alcântara, A. C.; Rojas, A. Enhanced photodegradation of ciprofloxacin antibiotic using ZnO@FAU composite: A promising material for contaminant removal. Desalination and Water Treatment 2024, 318, 100356. doi:10.1016/j.dwt.2024.100356
- Pankam, P.; Sae‐Oui, P.; Khaorapapong, N.; Boonchiangma, S.; Siriwong, C. Structure and properties of ZnO‐organobentonite‐filled natural rubber composites. ChemistrySelect 2024, 9. doi:10.1002/slct.202303821
- Fatimah, I.; Yahya, A.; Purwiandono, G.; Sagadevan, S. WO3 dispersed on a titanium porous clay heterostructure as a highly efficient visible light-active photocatalyst. Inorganic Chemistry Communications 2023, 158, 111548. doi:10.1016/j.inoche.2023.111548
- Thmaini, N.; Charradi, K.; Ahmed, Z.; Chtourou, R.; Aranda, P. Nanoarchitectonics of fibrous clays as fillers of improved proton-conducting membranes for fuel-cell applications. Applied Clay Science 2023, 242, 107019. doi:10.1016/j.clay.2023.107019
- Heidari, A.; Shahbazi, A.; Aminabhavi, T. M.; Barceló, D.; Rtimi, S. A systematic review of clay-based photocatalysts for emergent micropollutants removal and microbial inactivation from aqueous media: Status and limitations. Journal of Environmental Chemical Engineering 2022, 10, 108813. doi:10.1016/j.jece.2022.108813
- Chen, H.; Deng, H.; Zhong, X.; Zhou, H.; Zhan, J.; Zhou, X. Highly dispersed amorphous ZnO on a petal-like porous silica-clay composite with enhanced antimicrobial properties. Colloids and Surfaces B: Biointerfaces 2022, 220, 112978. doi:10.1016/j.colsurfb.2022.112978
- Popoola, S. A.; Al Dmour, H.; Rakass, S.; Fatimah, I.; Liu, Y.; Mohmoud, A.; Kooli, F. Enhancement Properties of Zr Modified Porous Clay Heterostructures for Adsorption of Basic-Blue 41 Dye: Equilibrium, Regeneration, and Single Batch Design Adsorber. Materials (Basel, Switzerland) 2022, 15, 5567. doi:10.3390/ma15165567
- Akkari, M.; Bardaoui, A.; Djebbi, M. A.; Amara, A. B. H.; Chtourou, R. Hydrothermal synthesis of Ag-doped ZnO/sepiolite nanostructured material for enhanced photocatalytic activity. Environmental science and pollution research international 2022, 29, 67159–67169. doi:10.1007/s11356-022-20539-w
- Fatimah, I.; Fadillah, G.; Yanti, I.; Doong, R.-A. Clay-Supported Metal Oxide Nanoparticles in Catalytic Advanced Oxidation Processes: A Review. Nanomaterials (Basel, Switzerland) 2022, 12, 825. doi:10.3390/nano12050825
- Dos Santos Fernandes Júnior, A. D. J.; Sodré, W. C.; Soares, B. E.; Bezerra, C. W. B.; Rojas, A.; Perez-Carvajal, J.; Alcântara, A. C. S. In situ assembling of layered double hydroxide to magadiite layered silicate with enhanced photocatalytic and recycling performance. Applied Surface Science 2021, 569, 151007. doi:10.1016/j.apsusc.2021.151007
- Nicola, B. P.; Bernardo-Gusmão, K.; Schwanke, A. J. Smectite Clay Nanoarchitectures: Rational Design and Applications. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Springer International Publishing, 2021; pp 275–305. doi:10.1007/978-3-030-36268-3_60
- Al Dmour, H.; Kooli, F.; Mohmoud, A.; Liu, Y.; Popoola, S. A. Al and Zr Porous Clay Heterostructures as Removal Agents of Basic Blue-41 Dye from an Artificially Polluted Solution: Regeneration Properties and Batch Design. Materials (Basel, Switzerland) 2021, 14, 2528. doi:10.3390/ma14102528
- Choudhury, T. Clay Hybrid Materials. Clay Science and Technology; IntechOpen, 2021. doi:10.5772/intechopen.92529
- Nicola, B. P.; Bernardo-Gusmão, K.; Schwanke, A. J. Smectite Clay Nanoarchitectures: Rational Design and Applications. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Springer International Publishing, 2020; pp 1–32. doi:10.1007/978-3-030-11155-7_60-1
- Nicola, B. P.; Bernardo-Gusmão, K.; Schwanke, A. J. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications - Smectite Clay Nanoarchitectures: Rational Design and Applications. 2020; pp 275–305.
- Chotiradsirikun, S.; Guo, R.; Bhalla, A. S.; Manuspiya, H. Novel synthesis route of porous clay heterostructures via mixed surfactant template and their dielectric behavior. Journal of Porous Materials 2020, 28, 117–128. doi:10.1007/s10934-020-00971-4
- Babu, A. T.; Antony, R. Clay semiconductor hetero-system of SnO2/bentonite nanocomposites for catalytic degradation of toxic organic wastes. Applied Clay Science 2019, 183, 105312. doi:10.1016/j.clay.2019.105312
- Rebitski, E. P.; Darder, M.; Aranda, P. Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides. Beilstein journal of nanotechnology 2019, 10, 1679–1690. doi:10.3762/bjnano.10.163
- Ruiz-Hitzky, E.; Aranda, P.; Akkari, M.; Khaorapapong, N.; Ogawa, M. Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles. Beilstein journal of nanotechnology 2019, 10, 1140–1156. doi:10.3762/bjnano.10.114