The difference in the thermal conductivity of nanofluids measured by different methods and its rationalization

Aparna Zagabathuni, Sudipto Ghosh and Shyamal Kumar Pabi
Beilstein J. Nanotechnol. 2016, 7, 2037–2044. https://doi.org/10.3762/bjnano.7.194

Cite the Following Article

The difference in the thermal conductivity of nanofluids measured by different methods and its rationalization
Aparna Zagabathuni, Sudipto Ghosh and Shyamal Kumar Pabi
Beilstein J. Nanotechnol. 2016, 7, 2037–2044. https://doi.org/10.3762/bjnano.7.194

How to Cite

Zagabathuni, A.; Ghosh, S.; Pabi, S. K. Beilstein J. Nanotechnol. 2016, 7, 2037–2044. doi:10.3762/bjnano.7.194

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 688.1 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mukherjee, S.; Wciślik, S.; Chandra Mishra, P.; Chaudhuri, P. Nanofluids: Critical issues, economics and sustainability perspectives. Particuology 2024, 87, 147–172. doi:10.1016/j.partic.2023.06.021
  • Gagliardi, S.; Rondino, F.; Paoletti, C.; Falconieri, M. On the Morphology of Nanostructured TiO2 for Energy Applications: The Shape of the Ubiquitous Nanomaterial. Nanomaterials (Basel, Switzerland) 2022, 12, 2608. doi:10.3390/nano12152608
  • Souza, R. R.; Faustino, V.; Gonçalves, I. M.; Moita, A. S.; Bañobre-López, M.; Lima, R. A Review of the Advances and Challenges in Measuring the Thermal Conductivity of Nanofluids. Nanomaterials (Basel, Switzerland) 2022, 12, 2526. doi:10.3390/nano12152526
  • Said, Z.; Sundar, L. S.; Tiwari, A. K.; Ali, H. M.; Sheikholeslami, M.; Bellos, E.; Babar, H. Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Physics Reports 2022, 946, 1–94. doi:10.1016/j.physrep.2021.07.002
  • Usoltseva, L.; Korobov, M. V.; Proskurnin, M. A. Photothermal spectroscopy: A promising tool for nanofluids. Journal of Applied Physics 2020, 128, 190901. doi:10.1063/5.0024332
  • Qiu, L.; Zhu, N.; Feng, Y.; Michaelides, E. E.; Żyła, G.; Jing, D.; Zhang, X.; Norris, P. M.; Markides, C. N.; Mahian, O. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Physics Reports 2020, 843, 1–81. doi:10.1016/j.physrep.2019.12.001
  • Meena, R. R.; Chaki, S. H.; Khimani, A. J.; Deshpande, M. P. Investigation of ultrasonic parameters and measurement of thermal conductivity of CuO-transformer oil nanofluids. Materials Research Express 2019, 6, 850f3. doi:10.1088/2053-1591/ab2754
  • Michael, M.; Zagabathuni, A.; Ghosh, S.; Pabi, S. K. Thermo-physical properties of pure ethylene glycol and water–ethylene glycol mixture-based boron nitride nanofluids. Journal of Thermal Analysis and Calorimetry 2018, 137, 369–380. doi:10.1007/s10973-018-7965-5
  • Aparna, Z.; Michael, M.; Pabi, S. K.; Ghosh, S. Diversity in thermal conductivity of aqueous Al2O3- and Ag-nanofluids measured by transient hot-wire and laser flash methods. Experimental Thermal and Fluid Science 2018, 94, 231–245. doi:10.1016/j.expthermflusci.2018.02.005
  • Aparna, Z.; Ghosh, S.; Pabi, S. K. Influence of container material on the heat transfer characteristics of nanofluids. Experimental Heat Transfer 2017, 30, 302–315. doi:10.1080/08916152.2016.1247122
Other Beilstein-Institut Open Science Activities