Cite the Following Article
Fundamental properties of high-quality carbon nanofoam: from low to high density
Natalie Frese, Shelby Taylor Mitchell, Christof Neumann, Amanda Bowers, Armin Gölzhäuser and Klaus Sattler
Beilstein J. Nanotechnol. 2016, 7, 2065–2073.
https://doi.org/10.3762/bjnano.7.197
How to Cite
Frese, N.; Taylor Mitchell, S.; Neumann, C.; Bowers, A.; Gölzhäuser, A.; Sattler, K. Beilstein J. Nanotechnol. 2016, 7, 2065–2073. doi:10.3762/bjnano.7.197
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.3 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Ghosh, S.; Zhang, Y.; Pagani, G.; Suriano, R.; Agozzino, M.; Jastrzębska, A.; Casari, C. S. KOH-activated micrometer-thick amorphous carbon nanofoam as a binder-free supercapacitor electrode with high-rate performance. Chemical communications (Cambridge, England) 2025, 61, 12797–12800. doi:10.1039/d5cc01916h
- Ghosh, S.; Righi, M.; Macrelli, A.; Goto, F.; Agozzino, M.; Bussetti, G.; Russo, V.; Bassi, A. L.; Casari, C. S. Low-density functionalized amorphous carbon nanofoam as binder-free Thin-film Supercapacitor electrode. Carbon Trends 2025, 20, 100516. doi:10.1016/j.cartre.2025.100516
- Kausar, A. Three-dimensional nanocarbon nanostructures: An overview. Three-Dimensional Graphene Nanocomposites; Elsevier, 2025; pp 1–22. doi:10.1016/b978-0-443-30215-2.00012-3
- Ghosh, S.; Righi, M.; Macrelli, A.; Divitini, G.; Orecchia, D.; Maffini, A.; Goto, F.; Bussetti, G.; Dellasega, D.; Russo, V.; Li Bassi, A.; Casari, C. S. Ballistic-Aggregated Carbon Nanofoam in Target-Side of Pulsed Laser Deposition for Energy Storage Applications. ChemSusChem 2024, 17, e202400755. doi:10.1002/cssc.202400755
- Das, M.; Biswas, A.; Purkait, T.; Boruah, T.; Bhardwaj, S.; Das, S. K.; Dey, R. S. The versatility of the dynamic hydrogen bubble template derived copper foam on the emerging energy applications: progress and future prospects. Journal of Materials Chemistry A 2022, 10, 13589–13624. doi:10.1039/d2ta01355j
- Brooks, C.; Lee, J.; Frese, N.; Ohtaki, K.; Wortmann, M.; Sattler, K. Process time variation and critical growth onset analysis for nanofoam formation in sucrose-based hydrothermal carbonization. Journal of Materials Science 2021, 56, 15004–15011. doi:10.1007/s10853-021-06222-4
- Wang, X.; Licht, G.; Liu, X.; Licht, S. One pot facile transformation of CO2 to an unusual 3-D nano-scaffold morphology of carbon. Scientific reports 2020, 10, 21518. doi:10.1038/s41598-020-78258-6
- Kharisov, B. I.; Kharissova, O. V. Less-Common Carbon Nanostructures. Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications; Springer International Publishing, 2019; pp 111–302. doi:10.1007/978-3-030-03505-1_4
- Kharisov, B. I.; Kharissova, O. V. Student Zone: Overview, Training, Practices, and Exercises. Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications; Springer International Publishing, 2019; pp 665–766. doi:10.1007/978-3-030-03505-1_11
- Saucedo-Jimenez, D.; Medina-Sanchez, I.; Couder Castañeda, C. Carbon Nanofoam by Pulsed Electric Arc Discharges. Advances in Materials Science and Engineering 2018, 2018. doi:10.1155/2018/7608543
- Saucedo-Jimenez, D.; Medina-Sanchez, I.; Castañeda, C. C. Carbon Nanofoam by Pulsed Electric Arc Discharges. Advances in Materials Science and Engineering 2018, 2018, 1–10.