Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases

Elena Dilonardo, Michele Penza, Marco Alvisi, Cinzia Di Franco, Francesco Palmisano, Luisa Torsi and Nicola Cioffi
Beilstein J. Nanotechnol. 2016, 7, 22–31. https://doi.org/10.3762/bjnano.7.3

Cite the Following Article

Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases
Elena Dilonardo, Michele Penza, Marco Alvisi, Cinzia Di Franco, Francesco Palmisano, Luisa Torsi and Nicola Cioffi
Beilstein J. Nanotechnol. 2016, 7, 22–31. https://doi.org/10.3762/bjnano.7.3

How to Cite

Dilonardo, E.; Penza, M.; Alvisi, M.; Di Franco, C.; Palmisano, F.; Torsi, L.; Cioffi, N. Beilstein J. Nanotechnol. 2016, 7, 22–31. doi:10.3762/bjnano.7.3

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.5 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Shaikh, T.; Jain, S. ZnO Nanostructure Based Gas Sensors: Critical Review Based on their Synthesis and Morphology Towards Various Oxidizing and Reducing Gases. Current Nanomaterials 2023, 8, 336–360. doi:10.2174/2405461508666221229103713
  • Choudhary, S.; Sushil; Hazra, A.; Gangopadhyay, S. Highly selective formaldehyde sensing using ZnO nano-rods. In 2ND INTERNATIONAL CONFERENCE ON MATERIALS FOR ENERGY AND ENVIRONMENT 2020, AIP Publishing, 2023. doi:10.1063/5.0136354
  • Wilson, D. M. Electronic Interface Circuits for Resistance-Based Sensors. IEEE Sensors Journal 2022, 22, 10223–10234. doi:10.1109/jsen.2021.3124766
  • Liu, Y.; Zhang, J.; Li, G.; Liu, J.; Liang, Q.; Wang, H.; Zhu, Y.; Gao, J.; Lu, H. In2O3–ZnO nanotubes for the sensitive and selective detection of ppb-level NO2 under UV irradiation at room temperature. Sensors and Actuators B: Chemical 2022, 355, 131322. doi:10.1016/j.snb.2021.131322
  • Sarkar, A.; Maity, S. Fabrication of ZnO and ZnO Heterostructures for Gas-Sensing Applications. Lecture Notes in Electrical Engineering; Springer Nature Singapore, 2022; pp 173–196. doi:10.1007/978-981-16-9124-9_9
  • Tohidi, S.; Tohidi, T.; Mohammadabad, P. H. CuO-decorated ZnO nanotube-based sensor for detecting CO gas: a first-principles study. Journal of molecular modeling 2021, 27, 1–8. doi:10.1007/s00894-021-04893-z
  • Yuan, Z.; Feng, Z.; Kong, L.; Zhan, J.; Ma, X. Simple synthesis of porous ZnO nanoplates hyper-doped with low concentration of Pt for efficient acetone sensing. Journal of Alloys and Compounds 2021, 865, 158890. doi:10.1016/j.jallcom.2021.158890
  • Reddy, B. K. S.; Borse, P. H. Review—Recent Material Advances and Their Mechanistic Approaches for Room Temperature Chemiresistive Gas Sensors. Journal of The Electrochemical Society 2021, 168, 057521. doi:10.1149/1945-7111/abf4ea
  • Sharma, V.; Maivizhikannan, V.; Rao, V. N.; Kumar, S.; Kumar, A.; Kumar, A.; Shankar, M. V.; Krishnan, V. Sea urchin shaped ZnO coupled with MoS2 and polyaniline as highly efficient photocatalysts for organic pollutant decomposition and hydrogen evolution. Ceramics International 2021, 47, 10301–10313. doi:10.1016/j.ceramint.2020.09.199
  • Herrera-Rivera, R.; Morales-Bautista, J.; Pineda-Reyes, A. M.; Rojas-Chávez, H.; Maldonado, A.; Vilchis, H.; Montejo-Alvaro, F.; Salinas-Juárez, M. G.; de la L. Olvera, M. Influence of Cu and Ni dopants on the sensing properties of ZnO gas sensor. Journal of Materials Science: Materials in Electronics 2020, 32, 133–140. doi:10.1007/s10854-020-04725-5
  • Wang, C.-N.; Li, Y.-L.; Gong, F.; Zhang, Y.-H.; Fang, S.; Zhang, H.-L. Advances in Doped ZnO Nanostructures for Gas Sensor. Chemical record (New York, N.Y.) 2020, 20, 1553–1567. doi:10.1002/tcr.202000088
  • Ueda, T.; Boehme, I.; Hyodo, T.; Shimizu, Y.; Weimar, U.; Barsan, N. Enhanced NO2-Sensing Properties of Au-Loaded Porous In2O3 Gas Sensors at Low Operating Temperatures. Chemosensors 2020, 8, 72. doi:10.3390/chemosensors8030072
  • Ishak, S.; Johari, S.; Ramli, M. M. Formaldehyde detection using Sn doped ZnO thin film. Journal of Sol-Gel Science and Technology 2020, 95, 265–275. doi:10.1007/s10971-020-05318-8
  • Sarf, F. Metal Oxide Gas Sensors by Nanostructures. Gas Sensors; IntechOpen, 2020. doi:10.5772/intechopen.88858
  • Lai, T.-Y.; Fang, T.-H.; Hsiao, Y.-J.; Chan, C.-A. Characteristics of Au-doped SnO2–ZnO heteronanostructures for gas sensing applications. Vacuum 2019, 166, 155–161. doi:10.1016/j.vacuum.2019.04.061
  • Chakraborty, S.; Pal, M. Highly selective and stable acetone sensor based on chemically prepared bismuth ferrite nanoparticles. Journal of Alloys and Compounds 2019, 787, 1204–1211. doi:10.1016/j.jallcom.2019.02.153
  • Talib, M.; Tabassum, R.; Abid; Islam, S. S.; Mishra, P. Improvements in the Performance of a Visible-NIR Photodetector Using Horizontally Aligned TiS3 Nanoribbons. ACS omega 2019, 4, 6180–6191. doi:10.1021/acsomega.8b03067
  • Nunes, D.; Pimentel, A.; Gonçalves, A.; Pereira, S. A.; Branquinho, R.; Barquinha, P.; Fortunato, E.; Martins, R. Metal oxide nanostructures for sensor applications. Semiconductor Science and Technology 2019, 34, 043001. doi:10.1088/1361-6641/ab011e
  • Chinh, N. D.; Hien, T. T.; Do Van, L.; Hieu, N. M.; Quang, N. D.; Lee, S.-M.; Kim, C.; Kim, D. Adsorption/desorption kinetics of nitric oxide on zinc oxide nano film sensor enhanced by light irradiation and gold-nanoparticles decoration. Sensors and Actuators B: Chemical 2019, 281, 262–272. doi:10.1016/j.snb.2018.10.113
  • Benzitouni, S.; Zaabat, M.; Mahdjoub, A.; Benaboud, A.; Boudine, B. High transparency and conductivity of heavily In-doped ZnO thin films deposited by dip-coating method. Materials Science-Poland 2018, 36, 427–434. doi:10.1515/msp-2018-0037
Other Beilstein-Institut Open Science Activities