Supporting Information
Supporting Information features the current–voltage curves of sensors A and B before NO sensing, the resistances of sensors A and B before and after NO adsorption obtained from the current responses at a bias of 10 V as shown in the Figures, a finer time scale current response of sensor A at 10 V in the UV-recovery mode, the current response of sensor B at 5 V in the UV-activation mode, and the current response of sensor B at 10 V due to the injection of 500 ppm NO and subsequent high-pressure N2.
| Supporting Information File 1: Additional experimental data. | ||
| Format: PDF | Size: 273.9 KB | Download |
Cite the Following Article
How to Cite
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 596.9 KB | Download |
Citations to This Article
Scholarly Works
- Liu, X.; Li, Q.; Cui, Y.; Lin, J.; Ding, L. Synthesis of porous spherical ZnO nanomaterials and the selective detection of NO at room temperature. Sensors and Actuators B: Chemical 2023, 378, 133155. doi:10.1016/j.snb.2022.133155
- Yeh, Y.-M.; Chang, S.-J.; Wang, P.-H.; Hsueh, T.-J. A TSV-Structured Room Temperature p-Type TiO2 Nitric Oxide Gas Sensor. Applied Sciences 2022, 12, 9946. doi:10.3390/app12199946
- Nasriddinov, A.; Tokarev, S.; Platonov, V.; Botezzatu, A.; Fedorova, O.; Rumyantseva, M.; Fedorov, Y. Heterobimetallic Ru(II)/M (M = Ag+, Cu2+, Pb2+) Complexes as Photosensitizers for Room-Temperature Gas Sensing. Molecules (Basel, Switzerland) 2022, 27, 5058. doi:10.3390/molecules27165058
- Chang, S.; Yang, M.; Pang, R.; Ye, L.; Wang, X.; Cao, A.; Shang, Y. Intrinsically flexible CNT-TiO2-Interlaced film for NO sensing at room temperature. Applied Surface Science 2022, 579, 152172. doi:10.1016/j.apsusc.2021.152172
- Tyagi, S.; Chaudhary, M.; Ambedkar, A. K.; Sharma, K.; Gautam, Y. K.; Singh, B. P. Metal oxide nanomaterial-based sensors for monitoring environmental NO2and its impact on the plant ecosystem: a review. Sensors & Diagnostics 2022, 1, 106–129. doi:10.1039/d1sd00034a
- Dong, Z.; Geng, Y.; Peng, G.; Fang, Z.; Yan, Y. Processing defect study and prevention in continuous stepped nanostructures fabricated by nanoskiving. Vacuum 2021, 193, 110497. doi:10.1016/j.vacuum.2021.110497
- Wang, Y.; Wang, Z.; Lin, P.; Wu, D.; Shi, Z.; Chen, X.; Xu, T.; Wang, X.; Tian, Y.; Li, X. All-Inorganic CsPbBr3/Cs4PbBr6 Perovskite/ZnO for Detection of NO with Enhanced Response and Low-Work Temperature. ChemistrySelect 2021, 6, 9657–9662. doi:10.1002/slct.202102051
- Khasim, S.; Pasha, A.; Hatem-Al-Aoh; Badi, N.; Imran, M.; Al-Ghamdi, S. A. Development of high-performance flexible and stretchable sensor based on secondary doped PEDOT–PSS:TiO2 nanocomposite for room-temperature detection of nitric oxide. Journal of Materials Science: Materials in Electronics 2021, 32, 7491–7508. doi:10.1007/s10854-021-05462-z
- Jian, L.-Y.; Lee, C. T.; Lee, H. Y. Performance Improvement of NO₂ Gas Sensor Using Rod-Patterned Tantalum Pentoxide-Alloyed Indium Oxide Sensing Membranes. IEEE Sensors Journal 2021, 21, 2134–2139. doi:10.1109/jsen.2020.3018454
- Bhat, P.; K, N. K. S.; Nagaraju, P. Fabrication of ultrasensitive hexagonal disc structured ZnO thin film sensor to trace nitric oxide. Journal of Asian Ceramic Societies 2020, 9, 96–105. doi:10.1080/21870764.2020.1848036
- Korotcenkov, G. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations. Part 1: 1D and 2D Nanostructures. Nanomaterials (Basel, Switzerland) 2020, 10, 1392. doi:10.3390/nano10071392
- Tshabalala, Z. P.; Oosthuizen, D. N.; Swart, H. C.; Motaung, D. E. Tools and techniques for characterization and evaluation of nanosensors. Nanosensors for Smart Cities; Elsevier, 2020; pp 85–110. doi:10.1016/b978-0-12-819870-4.00005-0
- Comini, E.; Zappa, D. One- and two-dimensional metal oxide nanostructures for chemical sensing. Semiconductor Gas Sensors; Elsevier, 2020; pp 161–184. doi:10.1016/b978-0-08-102559-8.00005-7
- Naderi, H.; Hajati, S.; Ghaedi, M.; Espinós, J. P. Highly selective few-ppm NO gas-sensing based on necklace-like nanofibers of ZnO/CdO n-n type I heterojunction. Sensors and Actuators B: Chemical 2019, 297, 126774. doi:10.1016/j.snb.2019.126774
- Li, Z.; Li, H.; Wu, Z.; Wang, M.; Luo, J.; Torun, H.; Hu, P.; Yang, C.; Grundmann, M.; Liu, X.; Fu, Y. Q. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Materials Horizons 2019, 6, 470–506. doi:10.1039/c8mh01365a
- Skryshevsky, V. A.; Kostiukcvych, O.; Ivanov, I. ITO-Nano-Titania Gas Sensors at Adsorption of Ethanol, Acetone and Water Molecules. In 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO), IEEE, 2018; pp 41–45. doi:10.1109/elnano.2018.8477490
- Jin, M. L.; Park, S.; Kim, J.-S.; Kwon, S. H.; Zhang, S.; Yoo, M. S.; Jang, S.; Koh, H.-J.; Cho, S.-Y.; Kim, S. Y.; Ahn, C. W.; Cho, K.; Lee, S. G.; Kim, H.; Jung, H. An Ultrastable Ionic Chemiresistor Skin with an Intrinsically Stretchable Polymer Electrolyte. Advanced materials (Deerfield Beach, Fla.) 2018, 30, 1706851. doi:10.1002/adma.201706851
- Karmaoui, M.; Lajaunie, L.; Tobaldi, D. M.; Leonardi, G.; Benbayer, C.; Arenal, R.; Labrincha, J. A.; Neri, G. Modification of anatase using noble-metals (Au, Pt, Ag): Toward a nanoheterojunction exhibiting simultaneously photocatalytic activity and plasmonic gas sensing. Applied Catalysis B: Environmental 2017, 218, 370–384. doi:10.1016/j.apcatb.2017.06.010