Cite the Following Article
Role of solvents in the electronic transport properties of single-molecule junctions
Katharina Luka-Guth, Sebastian Hambsch, Andreas Bloch, Philipp Ehrenreich, Bernd Michael Briechle, Filip Kilibarda, Torsten Sendler, Dmytro Sysoiev, Thomas Huhn, Artur Erbe and Elke Scheer
Beilstein J. Nanotechnol. 2016, 7, 1055–1067.
https://doi.org/10.3762/bjnano.7.99
How to Cite
Luka-Guth, K.; Hambsch, S.; Bloch, A.; Ehrenreich, P.; Briechle, B. M.; Kilibarda, F.; Sendler, T.; Sysoiev, D.; Huhn, T.; Erbe, A.; Scheer, E. Beilstein J. Nanotechnol. 2016, 7, 1055–1067. doi:10.3762/bjnano.7.99
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.1 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Shi, W.; Greenwald, J. E.; Venkataraman, L. Impact of Solvent Electrostatic Environment on Molecular Junctions Probed via Electrochemical Impedance Spectroscopy. Nano letters 2024, 24, 9283–9288. doi:10.1021/acs.nanolett.4c02103
- Raja, S. N.; Jain, S.; Kipen, J.; Jaldén, J.; Stemme, G.; Herland, A.; Niklaus, F. Electromigrated Gold Nanogap Tunnel Junction Arrays: Fabrication and Electrical Behavior in Liquid and Gaseous Media. ACS applied materials & interfaces 2024, 16, 37131–37146. doi:10.1021/acsami.4c03282
- Bâldea, I. Can tunneling current in molecular junctions be so strongly temperature dependent to challenge a hopping mechanism? Analytical formulas answer this question and provide important insight into large area junctions. Physical chemistry chemical physics : PCCP 2024, 26, 6540–6556. doi:10.1039/d3cp05046g
- Li, Z.; Yu, X. Reply to the 'Comment on "A single level tunneling model for molecular junctions: evaluating the simulation methods"' by I Baldea, Phys. Chem. Chem. Phys., 2024, 26, D2CP05110A (http://D2CP05110A). Physical chemistry chemical physics : PCCP 2024, 26, 7236–7238. doi:10.1039/d3cp05375j
- Yasini, P.; Shepard, S.; Smeu, M.; Borguet, E. Modulation of Charge Transport through Single Molecules Induced by Solvent-Stabilized Intramolecular Charge Transfer. The journal of physical chemistry. B 2023, 127, 9771–9780. doi:10.1021/acs.jpcb.3c03576
- Pabi, B.; Marek, Š.; Pal, A.; Kumari, P.; Ray, S. J.; Thakur, A.; Korytár, R.; Pal, A. N. Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond. Nanoscale 2023, 15, 12995–13008. doi:10.1039/d3nr02585c
- Bâldea, I. Can room-temperature data for tunneling molecular junctions be analyzed within a theoretical framework assuming zero temperature?. Physical chemistry chemical physics : PCCP 2023, 25, 19750–19763. doi:10.1039/d3cp00740e
- Gurski, G.; Kirchberg, H.; Nalbach, P.; Thorwart, M. Hydration shell effects in ac-driven single-molecule junctions. Physical Review B 2023, 107. doi:10.1103/physrevb.107.165413
- de Ara, T.; Sabater, C.; Borja-Espinosa, C.; Ferrer-Alcaraz, P.; Baciu, B. C.; Guijarro, A.; Untiedt, C. Signature of adsorbed solvents for molecular electronics revealed via scanning tunneling microscopy. Materials Chemistry and Physics 2022, 291, 126645. doi:10.1016/j.matchemphys.2022.126645
- Opodi, E. M.; Song, X.; Yu, X.; Hu, W. A single level tunneling model for molecular junctions: evaluating the simulation methods. Physical chemistry chemical physics : PCCP 2022, 24, 11958–11966. doi:10.1039/d1cp05807j
- Kilibarda, F.; Strobel, A.; Sendler, T.; Wieser, M.; Mortensen, M. R.; Trads, J. B.; Helm, M.; Kerbusch, J.; Scheer, E.; Gemming, S.; Gothelf, K. V.; Erbe, A. Single-Molecule Doping: Conductance Changed By Transition Metal Centers in Salen Molecules. Advanced Electronic Materials 2021, 7, 2100252. doi:10.1002/aelm.202100252
- Mijbil, Z. Y. Single-molecule thermoelectric properties susceptibility to environment molecules. Molecular Simulation 2021, 47, 1059–1065. doi:10.1080/08927022.2021.1946055
- Gelin, M. F.; Kosov, D. S. A model for dynamical solvent control of molecular junction electronic properties. The Journal of chemical physics 2021, 154, 044107. doi:10.1063/5.0039328
- Nováková Lachmanová, Š.; Kolivoška, V.; Šebera, J.; Gasior, J.; Mészáros, G.; Dupeyre, G.; Lainé, P. P.; Hromadová, M. Environmental Control of Single‐Molecule Junction Evolution and Conductance: A Case Study of Expanded Pyridinium Wiring. Angewandte Chemie 2021, 133, 4782–4789. doi:10.1002/ange.202013882
- Lachmanová, Š. N.; Kolivoška, V.; Šebera, J.; Gasior, J.; Mészáros, G.; Dupeyre, G.; Lainé, P. P.; Hromadová, M. Environmental Control of Single‐Molecule Junction Evolution and Conductance. Case Study of Expanded Pyridinium Wiring. Angewandte Chemie (International ed. in English) 2021, 60, 4732–4739. doi:10.1002/anie.202013882
- Foti, G.; Vázquez, H. Adsorbate-driven cooling of carbene-based molecular junctions. Beilstein journal of nanotechnology 2017, 8, 2060–2068. doi:10.3762/bjnano.8.206
- Szarek, P. Electric Permittivity in Individual Atomic and Molecular Systems Through Direct Associations with Electric Dipole Polarizability and Chemical Hardness. The Journal of Physical Chemistry C 2017, 121, 12593–12602. doi:10.1021/acs.jpcc.7b02626
- Wu, B. H.; Ivie, J. A.; Johnson, T.; Monti, O. L. Uncovering hierarchical data structure in single molecule transport. The Journal of Chemical Physics 2017, 146, 092321. doi:10.1063/1.4974937