Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors

Dario Zappa, Angela Bertuna, Elisabetta Comini, Navpreet Kaur, Nicola Poli, Veronica Sberveglieri and Giorgio Sberveglieri
Beilstein J. Nanotechnol. 2017, 8, 1205–1217. https://doi.org/10.3762/bjnano.8.122

Cite the Following Article

Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors
Dario Zappa, Angela Bertuna, Elisabetta Comini, Navpreet Kaur, Nicola Poli, Veronica Sberveglieri and Giorgio Sberveglieri
Beilstein J. Nanotechnol. 2017, 8, 1205–1217. https://doi.org/10.3762/bjnano.8.122

How to Cite

Zappa, D.; Bertuna, A.; Comini, E.; Kaur, N.; Poli, N.; Sberveglieri, V.; Sberveglieri, G. Beilstein J. Nanotechnol. 2017, 8, 1205–1217. doi:10.3762/bjnano.8.122

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 475.4 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zappa, D.; Kaur, N.; Moumen, A.; Comini, E. Metal Oxide Nanowire-Based Sensor Array for Hydrogen Detection. Micromachines 2023, 14, 2124. doi:10.3390/mi14112124
  • Pratiwi, I. F. R.; Putri, N. P.; Rohmawati, L.; Kusumawati, D. H. Performance of Polyaniline Thin Film as a Functional Material of Acid Vapor Sensors. Journal of Physics: Conference Series 2023, 2623, 12037–012037. doi:10.1088/1742-6596/2623/1/012037
  • Dey, M.; Maity, N.; Singh, A. K. Metal Oxide Nanostructures-Based Electronics. Optical Properties of Metal Oxide Nanostructures; Springer Nature Singapore, 2023; pp 371–397. doi:10.1007/978-981-99-5640-1_12
  • Pavlov, V.; Georgiev, R.; Lazarova, K.; Georgieva, B.; Babeva, T. Hard-Templated Porous Niobia Films for Optical Sensing Applications. Photonics 2023, 10, 167. doi:10.3390/photonics10020167
  • Alenezy, E. K.; Kandjani, A. E.; Pramoda, K.; Kobaisi, M. A.; Ippolito, S. J.; Sabri, Y.; Bhargava, S. K. Heterostructure colloidal crystal for light activated hydrogen sensing at low temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 652, 129791. doi:10.1016/j.colsurfa.2022.129791
  • Núñez-Carmona, E.; Greco, G.; Genzardi, D.; Piccoli, P.; Zottele, I.; Tamanini, A.; Sberveglieri, G.; Sberveglieri, V. Nanowire Gas Sensor to Support Optical and Volatile Changes in the Production Chain of Fruit Jams. Chemosensors 2022, 10, 345. doi:10.3390/chemosensors10090345
  • Alam, M. W.; Pooja, P.; Aamir, M.; Souayeh, B.; Mushtaq, S.; Khan, M. S.; Amin, M. N.; Khan, K.; Shajahan, S. The Recent Development in Chemoresistive-Based Heterostructure Gas Sensor Technology, Their Future Opportunities and Challenges: A Review. Membranes 2022, 12, 555. doi:10.3390/membranes12060555
  • Lagutin, A. S.; Vasil'ev, A. A. Solid-State Gas Sensors. Journal of Analytical Chemistry 2022, 77, 131–144. doi:10.1134/s1061934822020083
  • Tonezzer, M.; Thi Thanh Le, D.; Van Duy, L.; Hoa, N. D.; Gasperi, F.; Van Duy, N.; Biasioli, F. Electronic noses based on metal oxide nanowires: A review. Nanotechnology Reviews 2022, 11, 897–925. doi:10.1515/ntrev-2022-0056
  • Nyong, A. E.; Udoh, G.; Awaka-Ama, J. J.; Nsi, E. W.; Rohatgi, P. K. A Study of the Morphological Changes and the Growth Kinetics of the Oxides Formed by the High Temperature Oxidation of Cu-32.02% Zn-2.30% Pb Brass. Materials Research 2022, 25. doi:10.1590/1980-5373-mr-2021-0173
  • Haas, K.-H. Metal Oxide Nanoparticles; Wiley, 2021; pp 29–65. doi:10.1002/9781119436782.ch2
  • Guo, R.; Zhang, K.; Ji, S.; Zheng, Y.; Jin, M. Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications. Chinese Chemical Letters 2021, 32, 2679–2692. doi:10.1016/j.cclet.2021.03.041
  • Muzaffar, T.; Khosa, R. Y.; Iftikhar, U.; Obodo, R. M.; Sajjad, S.; Usman, M. Synthesis and Characterization of WO3/GO Nanocomposites for Antimicrobial Properties. Journal of Cluster Science 2021, 33, 1987–1996. doi:10.1007/s10876-021-02116-2
  • Muzaffar, T.; Khosa, R. Y.; Iftikhar, U.; Obodo, R. M.; Sajjad, S.; Usman, M. Synthesis and Characterization of WO3/GO Nanocomposites for Antimicrobial Properties. Journal of Cluster Science 2021, 1–10.
  • Kaur, N.; Zappa, D.; Maraloiu, V.-A.; Comini, E. Novel Christmas Branched Like NiO/NiWO4/WO3 (p–p–n) Nanowire Heterostructures for Chemical Sensing. Advanced Functional Materials 2021, 31, 2104416. doi:10.1002/adfm.202104416
  • Huang, M.; Wang, S.; Fu, H.; Shao, H.; Wang, Y.; Yu, K.; Huang, Y.; Jv, Z.; Wang, L. An efficient vapor-phase processing method derived mesoporous N-C@SnO2-Co3O4 hollow nanoboxes with abundant surface oxygen vacancy for highly improved gas sensing application. Journal of Alloys and Compounds 2021, 863, 158341. doi:10.1016/j.jallcom.2020.158341
  • Galvan, D.; Aquino, A.; Effting, L.; Mantovani, A. C. G.; Bona, E.; Conte-Junior, C. A. E-sensing and nanoscale-sensing devices associated with data processing algorithms applied to food quality control: a systematic review. Critical reviews in food science and nutrition 2021, 62, 1–41. doi:10.1080/10408398.2021.1903384
  • Nandanapalli, K. R.; Mudusu, D.; Lee, S. Defects-free single-crystalline zinc oxide nanostructures for efficient photoelectrochemical solar hydrogen generation. International Journal of Hydrogen Energy 2020, 45, 27279–27290. doi:10.1016/j.ijhydene.2020.07.138
  • Fu, Y.; Li, J.; Xu, H. SnO2 recycled from tin slime for enhanced SO2 sensing properties by NiO surface decoration. Materials Science in Semiconductor Processing 2020, 114, 105073. doi:10.1016/j.mssp.2020.105073
  • Singh, M.; Kaur, N.; Drera, G.; Casotto, A.; Sangaletti, L.; Comini, E. SAM Functionalized ZnO Nanowires for Selective Acetone Detection: Optimized Surface Specific Interaction Using APTMS and GLYMO Monolayers. Advanced Functional Materials 2020, 30, 2003217. doi:10.1002/adfm.202003217
Other Beilstein-Institut Open Science Activities