Supporting Information
| Supporting Information File 1: Additional experimental data. | ||
| Format: PDF | Size: 339.0 KB | Download |
Cite the Following Article
Development of a nitrogen-doped 2D material for tribological applications in the boundary-lubrication regime
Shende Rashmi Chandrabhan, Velayudhanpillai Jayan, Somendra Singh Parihar and Sundara Ramaprabhu
Beilstein J. Nanotechnol. 2017, 8, 1476–1483.
https://doi.org/10.3762/bjnano.8.147
How to Cite
Chandrabhan, S. R.; Jayan, V.; Parihar, S. S.; Ramaprabhu, S. Beilstein J. Nanotechnol. 2017, 8, 1476–1483. doi:10.3762/bjnano.8.147
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.2 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Ahmad, D.; Bibi, I.; Majid, F.; Kamal, S.; Lim, S.; Alwadai, N.; Raza, Q.; Aamir, M.; Nazir, A.; Iqbal, M. Impacts of r-GO and N-doping on the structural, magnetic, optical and photocatalytic properties of CuAl2O4: enhanced crystal violet removal under solar light irradiation. RSC advances 2025, 15, 24223–24235. doi:10.1039/d5ra02304a
- Loh, N. Y. L.; Tee, W. T.; Hiew, B. Y. Z.; Hanson, S.; Gan, S.; Lee, L. Y. Synthesis, Properties and Applications of Graphene and Related Materials. Elemental Carbon; Royal Society of Chemistry, 2024; pp 81–154. doi:10.1039/9781839169984-00081
- Macit, C. K.; Horlu, M.; Aksakal, B.; Er, Y. Synthesis of Copper Matrix Hybrid Composites with Boron‐, Nitrogen‐, and Silicon‐Doped Reduced Graphene Oxide by Hot Press Technique: Investigation of Tribological, Mechanical, and Electrical Conductivity Properties. Advanced Engineering Materials 2024, 27. doi:10.1002/adem.202401670
- Chhabra, P.; Johari, A. doi:10.1002/9781119865698.ch3
- Singh, S.; Chauhan, A. S.; Prasad, L. doi:10.1002/9781119865698.ch2
- Dağıdır, K.; Bilen, K. Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor. Beilstein journal of nanotechnology 2023, 14, 1041–1058. doi:10.3762/bjnano.14.86
- Li, J.; Jia, R.; Zhao, X. Electrochemical sensing for rapid detection of nandrolone as a doping agent in food commodities using Nitrogen doped-reduced graphene oxide modified electrode. Journal of Food Measurement and Characterization 2023, 18, 744–755. doi:10.1007/s11694-023-02222-x
- Htwe, Y. Z. N.; Al-Janabi, A. S.; Wadzer, Y.; Mamat, H. Review of tribological properties of nanoparticle-based lubricants and their hybrids and composites. Friction 2023, 12, 569–590. doi:10.1007/s40544-023-0774-2
- Paul, G.; Jha, P.; Jha, A.; Roy, A. Effect of Molybdenum Disulfide Dispersed Nanolubricants on the Tribological Properties of Mating Stainless Steel Pair. Journal of Materials Engineering and Performance 2023, 33, 5291–5305. doi:10.1007/s11665-023-08483-3
- Zhang, L.; Li, N. Tribological investigation of graphene or/and MoDTC as additives in PAO base oil. Diamond and Related Materials 2023, 136, 110043. doi:10.1016/j.diamond.2023.110043
- Gao, Q.; Liu, S.; Hou, K.; Li, Z.; Wang, J. Graphene-Based Nanomaterials as Lubricant Additives: A Review. Lubricants 2022, 10, 273. doi:10.3390/lubricants10100273
- Zhao, J.; Tong, G.; Yingru, L.; He, Y.; Shi, Y. Two-dimensional (2D) graphene nanosheets as advanced lubricant additives: A critical review and prospect. Materials Today Communications 2021, 29, 102755. doi:10.1016/j.mtcomm.2021.102755
- Ta, H. T. T.; Tieu, A. K.; Zhu, H.; Yu, H.; Tran, N. V. A First-Principles Study of Impurity-Enhanced Adhesion and Lubricity of Graphene on Iron Oxide Surface. The Journal of Physical Chemistry C 2021, 125, 4310–4321. doi:10.1021/acs.jpcc.1c00046
- Bhanvase, B. A.; Barai, D. P. Nanofluids for Heat and Mass Transfer - Other applications of nanofluids. Nanofluids for Heat and Mass Transfer; Elsevier, 2021; pp 415–432. doi:10.1016/b978-0-12-821955-3.00012-1
- Sagar, V. K.; Bhattacharya, S.; Dey, S.; Bisht, P. B. Optical characterization of graphene-f-o-phenylenediamine and charge transfer interaction with organic dyes. Carbon 2020, 166, 15–25. doi:10.1016/j.carbon.2020.05.026
- Ranjan, N.; Shende, R. C.; Kamaraj, M.; Ramaprabhu, S. Utilization of TiO2/gC3N4 nanoadditive to boost oxidative properties of vegetable oil for tribological application. Friction 2020, 9, 273–287. doi:10.1007/s40544-019-0336-9
- Song, W.; Chen, P.; Yan, J.; Zhu, W.; Ji, H. The Tribological Properties of Reduced Graphene Oxide Doped by N and B Species with Different Configurations. ACS applied materials & interfaces 2020, 12, 29737–29746. doi:10.1021/acsami.0c03467
- He, Z.; Min, C.; Yang, Y.; Zhang, K.; Dong, C.; Zhou, Y.; Shen, W. Synthesis by partial oxygenation of graphite-like carbon nitride (OCN) decorated with oleic diethanolamide borate (ODAB) for oil-based lubricant additives and its tribological properties. New Journal of Chemistry 2020, 44, 5377–5385. doi:10.1039/d0nj00726a
- Sivakumar, B.; Ranjan, N.; Ramaprabhu, S.; Kamaraj, M. Tribological properties of graphite oxide derivative as nano-additive: Synthesized from the waster carbon source. Tribology International 2020, 142, 105990. doi:10.1016/j.triboint.2019.105990
- Bhaumik, S.; Pathak, S.; Dey, S.; Datta, S. Artificial intelligence based design of multiple friction modifiers dispersed castor oil and evaluating its tribological properties. Tribology International 2019, 140, 105813. doi:10.1016/j.triboint.2019.06.006