Cite the Following Article
Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion
Amit Singhania and Shipra Mital Gupta
Beilstein J. Nanotechnol. 2017, 8, 1546–1552.
https://doi.org/10.3762/bjnano.8.156
How to Cite
Singhania, A.; Gupta, S. M. Beilstein J. Nanotechnol. 2017, 8, 1546–1552. doi:10.3762/bjnano.8.156
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 227.1 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Guo, L.; Li, Z.; Guo, M.; Lu, Z.; Bi, F.; Wang, Y.; Zhang, X. Study on the difference in catalytic performance and chlorine-resistance of Universitetet i Oslo-derived M@ZrO2 (M = Pd, Pt) catalysts for o-Xylene degradation. Materials Today Chemistry 2025, 49, 103046. doi:10.1016/j.mtchem.2025.103046
- Duan, X.; Yang, J.; Li, H.; Zhu, J.; Liu, R.; Fang, Y.; Li, H.; Hu, G.; Li, J.; Liu, Q.; Liu, W. Investigation on the mechanism of different valence states of copper-based catalysts to regulate catalyst ignition at low temperature. Journal of Solid State Chemistry 2025, 350, 125498. doi:10.1016/j.jssc.2025.125498
- Liu, H.; Bright, A.; Stephane, M. N.; Elvira, F. M.; Anaman, R.; Chen, H.; Xiang, K.; Wu, J. Low-temperature CO oxidation on oxygen vacancy-enriched Cu- and Ni-doped CeO2 nanoparticles. Surfaces and Interfaces 2025, 72, 107219. doi:10.1016/j.surfin.2025.107219
- Zhao, G.; Guo, Y.; Huang, P.; Zhang, Z.; Zhao, C. Enhanced low-temperature CO oxidation over CuO-Co3O4 catalysts promoted with transition metal oxides. Fuel 2025, 403, 136113. doi:10.1016/j.fuel.2025.136113
- Khomenkova, L.; Marchylo, O.; Polishchuk, Y.; Ponomaryov, S.; Isaieva, O.; Vorona, I.; Melnichuk, L.; Portier, X.; Melnichuk, O.; Korsunska, N. Effect of dopant loading and calcination conditions on structural and optical properties of ZrO2 nanopowders doped with copper and yttrium. Materials Research Express 2024, 11, 65005–065005. doi:10.1088/2053-1591/ad51d9
- Liu, C.; Lin, L.; Wu, H.; Liu, Y.; Mu, R.; Fu, Q. Activating lattice oxygen of single-layer ZnO for the catalytic oxidation reaction. Physical chemistry chemical physics : PCCP 2023, 25, 20121–20127. doi:10.1039/d3cp02580b
- Bi, F.; Zhao, Z.; Yang, Y.; Gao, W.; Liu, N.; Huang, Y.; Zhang, X. Chlorine-Coordinated Pd Single Atom Enhanced the Chlorine Resistance for Volatile Organic Compound Degradation: Mechanism Study. Environmental science & technology 2022, 56, 17321–17330. doi:10.1021/acs.est.2c06886
- Kim, S. B.; Shin, J. H.; Kim, G. J.; Hong, S. C. Promoting Metal–Support Interaction on Pt/TiO2 Catalyst by Antimony for Enhanced Carbon Monoxide Oxidation Activity at Room Temperature. Industrial & Engineering Chemistry Research 2022, 61, 14793–14803. doi:10.1021/acs.iecr.2c01518
- Ntola, P.; Friedrich, H. B.; Mahomed, A. S.; Olivier, E. J.; Govender, A.; Singh, S. Exploring the role of fuel on the microstructure of VOx/MgO powders prepared using solution combustion synthesis. Materials Chemistry and Physics 2022, 278, 125602. doi:10.1016/j.matchemphys.2021.125602
- Hussain, I.; Jalil, A. A.; Hamid, M.; Hassan, N. Recent advances in catalytic systems in the prism of physicochemical properties to remediate toxic CO pollutants: A state-of-the-art review. Chemosphere 2021, 277, 130285. doi:10.1016/j.chemosphere.2021.130285
- Xiang, D.; Wang, J.; Zhang, X. Synthesis of Highly Efficient CuCeZr Catalyst Derived from UiO-66 Precursor for CO Oxidation. Catalysis Letters 2020, 150, 2630–2639. doi:10.1007/s10562-020-03164-5
- Wang, L.; Yin, G.; Yang, Y.; Zhang, X. Enhanced CO oxidation and toluene oxidation on CuCeZr catalysts derived from UiO-66 metal organic frameworks. Reaction Kinetics, Mechanisms and Catalysis 2019, 128, 193–204. doi:10.1007/s11144-019-01623-8
- Bera, P. Solution Combustion Synthesis as a Novel Route to Preparation of Catalysts. International Journal of Self-Propagating High-Temperature Synthesis 2019, 28, 77–109. doi:10.3103/s106138621902002x
- Bin Kim, S.; Kim, M. S.; Kim, W.; Hong, S. C.
- Singhania, A.; Gupta, S. M. Highly Active CeO 2 Nanocatalysts for Low-Temperature CO Oxidation. Russian Journal of Physical Chemistry A 2018, 92, 1900–1906. doi:10.1134/s0036024418100321
- Singhania, A.; Bhaskarwar, A. N. Synthesis, Characterization and Catalytic Activity of CeO2 and Ir-doped CeO2 Nanoparticles for Hydrogen Iodide Decomposition. Chemistry Letters 2018, 47, 1224–1227. doi:10.1246/cl.180427
- Singhania, A.; Bhaskarwar, A. N. TiO2 as a catalyst for hydrogen production from hydrogen-iodide in thermo-chemical water-splitting sulfur-iodine cycle. Fuel 2018, 221, 393–398. doi:10.1016/j.fuel.2018.02.130
- Singhania, A.; Gupta, S. M. CeO2−xNx Solid Solutions: Synthesis, Characterization, Electronic Structure and Catalytic Study for CO Oxidation. Catalysis Letters 2018, 148, 2001–2007. doi:10.1007/s10562-018-2419-z
- Sun, L.; Zhu, J.; Wei, M.; Zhang, C.; Song, Y.; Qi, P. Effect of zirconia nanoparticles on the rheological properties of silica-based shear thickening fluid. Materials Research Express 2018, 5, 055705. doi:10.1088/2053-1591/aac255
- Singhania, A.; Bhaskarwar, A. N. Performance of Activated‐Carbon‐Supported Ni, Co, and Ni–Co Catalysts for Hydrogen Iodide Decomposition in a Thermochemical Water‐Splitting Sulfur–Iodine Cycle. Energy Technology 2018, 6, 1104–1111. doi:10.1002/ente.201700752