Supporting Information
The supporting information includes FTIR methods and spectra, additional rheometry and CD data, DSC data, and additional TEM images for the gradual pH change experiments.
| Supporting Information File 1: Additional experimental information. | ||
| Format: PDF | Size: 1.6 MB | Download |
Cite the Following Article
Luminescent supramolecular hydrogels from a tripeptide and nitrogen-doped carbon nanodots
Maria C. Cringoli, Slavko Kralj, Marina Kurbasic, Massimo Urban and Silvia Marchesan
Beilstein J. Nanotechnol. 2017, 8, 1553–1562.
https://doi.org/10.3762/bjnano.8.157
How to Cite
Cringoli, M. C.; Kralj, S.; Kurbasic, M.; Urban, M.; Marchesan, S. Beilstein J. Nanotechnol. 2017, 8, 1553–1562. doi:10.3762/bjnano.8.157
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 553.7 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Rozhin, P.; Adorinni, S.; Iglesias, D.; Mackiol, T.; Kralj, S.; Bisetto, M.; Abrami, M.; Grassi, M.; Bevilacqua, M.; Fornasiero, P.; Marchesan, S. Nanocomposite Hydrogels with Self-Assembling Peptide-Functionalized Carbon Nanostructures. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202301708. doi:10.1002/chem.202301708
- Elkodous, M. A.; Olojede, S. O.; Sahoo, S.; Kumar, R. Recent advances in modification of novel carbon-based composites: Synthesis, properties, and biotechnological/ biomedical applications. Chemico-biological interactions 2023, 379, 110517. doi:10.1016/j.cbi.2023.110517
- Rozhin, P.; Kralj, S.; Soula, B.; Marchesan, S.; Flahaut, E. Hydrogels from a Self-Assembling Tripeptide and Carbon Nanotubes (CNTs): Comparison between Single-Walled and Double-Walled CNTs. Nanomaterials (Basel, Switzerland) 2023, 13, 847. doi:10.3390/nano13050847
- Srivastava, V. Nanocellulose in Industrial Wastewater Treatment: An Overview. Water Science and Technology Library; Springer International Publishing, 2022; pp 209–236. doi:10.1007/978-3-030-98202-7_8
- Tirkey, A. S.; Vhatkar, S. S.; Oraon, R. Integration of geospatial technology for mapping of algae: an economical perspective for assessing nanocellulose. Nanocellulose Materials; Elsevier, 2022; pp 289–310. doi:10.1016/b978-0-12-823963-6.00015-6
- Rozhin, P.; Charitidis, C. A.; Marchesan, S. Self-Assembling Peptides and Carbon Nanomaterials Join Forces for Innovative Biomedical Applications. Molecules (Basel, Switzerland) 2021, 26, 4084. doi:10.3390/molecules26134084
- Giraud, T.; Bouguet-Bonnet, S.; Stébé, M.-J.; Richaudeau, L.; Pickaert, G.; Averlant-Petit, M.-C.; Stefan, L. Co-assembly and multicomponent hydrogel formation upon mixing nucleobase-containing peptides. Nanoscale 2021, 13, 10566–10578. doi:10.1039/d1nr02417e
- Adorinni, S.; Cringoli, M. C.; Perathoner, S.; Fornasiero, P.; Marchesan, S. Green Approaches to Carbon Nanostructure-Based Biomaterials. Applied Sciences 2021, 11, 2490. doi:10.3390/app11062490
- Rybarczyk, M. K.; Gontarek-Castro, E.; Ollik, K.; Lieder, M. Biomass-Derived Nitrogen Functionalized Carbon Nanodots and Their Anti-Biofouling Properties. Processes 2020, 9, 61. doi:10.3390/pr9010061
- Cringoli, M. C.; Marchesan, S. CHAPTER 6:The Use of d-Amino Acids for Peptide Self-assembled Systems. Peptide-based Biomaterials; The Royal Society of Chemistry, 2020; pp 174–216. doi:10.1039/9781839161148-00174
- Wang, Y.; Zhang, W.; Gong, C.; Liu, B.; Li, Y.; Wang, L.; Su, Z.; Wei, G. Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. Soft matter 2020, 16, 10029–10045. doi:10.1039/d0sm00966k
- Filippini, G.; Amato, F.; Rosso, C.; Ragazzon, G.; Vega-Peñaloza, A.; Companyó, X.; Dell'Amico, L.; Bonchio, M.; Prato, M. Mapping the Surface Groups of Amine-Rich Carbon Dots Enables Covalent Catalysis in Aqueous Media. Chem 2020, 6, 3022–3037. doi:10.1016/j.chempr.2020.08.009
- Giraud, T.; Bouguet-Bonnet, S.; Marchal, P.; Pickaert, G.; Averlant-Petit, M.-C.; Stefan, L. Improving and fine-tuning the properties of peptide-based hydrogels via incorporation of peptide nucleic acids. Nanoscale 2020, 12, 19905–19917. doi:10.1039/d0nr03483e
- Tavakoli, J.; Raston, C. L.; Tang, Y. Tuning Surface Morphology of Fluorescent Hydrogels Using a Vortex Fluidic Device. Molecules (Basel, Switzerland) 2020, 25, 3445. doi:10.3390/molecules25153445
- Rajakumar, G.; Zhang, X.; Gomathi, T.; Wang, S.; Ansari, M. A.; Mydhili, G.; Nirmala, G.; Alzohairy, M. A.; Chung, I.-M. Current Use of Carbon-Based Materials for Biomedical Applications—A Prospective and Review. Processes 2020, 8, 355. doi:10.3390/pr8030355
- You, Y.; Xing, R.; Zou, Q.; Shi, F.; Yan, X. High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide. Beilstein journal of nanotechnology 2019, 10, 1894–1901. doi:10.3762/bjnano.10.184
- Parisi, E.; Garcia, A. M.; Marson, D.; Posocco, P.; Marchesan, S. Supramolecular Tripeptide Hydrogel Assembly with 5-Fluorouracil. Gels (Basel, Switzerland) 2019, 5, 5. doi:10.3390/gels5010005
- Tadyszak, K.; Wychowaniec, J. K.; Litowczenko, J. Biomedical Applications of Graphene-Based Structures. Nanomaterials (Basel, Switzerland) 2018, 8, 944. doi:10.3390/nano8110944
- Shak, K. P. Y.; Pang, Y. L.; Mah, S.-K. Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein journal of nanotechnology 2018, 9, 2479–2498. doi:10.3762/bjnano.9.232
- Iglesias, D.; Melle-Franco, M.; Kurbasic, M.; Melchionna, M.; Abrami, M.; Grassi, M.; Prato, M.; Marchesan, S. Oxidized Nanocarbons-Tripeptide Supramolecular Hydrogels: Shape Matters!. ACS nano 2018, 12, 5530–5538. doi:10.1021/acsnano.8b01182