Cite the Following Article
Transport characteristics of a silicene nanoribbon on Ag(110)
Ryoichi Hiraoka, Chun-Liang Lin, Kotaro Nakamura, Ryo Nagao, Maki Kawai, Ryuichi Arafune and Noriaki Takagi
Beilstein J. Nanotechnol. 2017, 8, 1699–1704.
https://doi.org/10.3762/bjnano.8.170
How to Cite
Hiraoka, R.; Lin, C.-L.; Nakamura, K.; Nagao, R.; Kawai, M.; Arafune, R.; Takagi, N. Beilstein J. Nanotechnol. 2017, 8, 1699–1704. doi:10.3762/bjnano.8.170
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.1 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- El Mechyly, K.; Mehdaoui, A.; Hanf, M. C.; Sonnet, P.; Stephan, R.; Deroche, I.; Dentel, D.; Pirri, C. Structural investigation of germanium nanoribbons network on Al(110). Nanotechnology 2025, 36, 385601. doi:10.1088/1361-6528/ae029d
- Dávila, M. E.; Le Lay, G. Silicene: Genesis, remarkable discoveries, and legacy. Materials Today Advances 2022, 16, 100312. doi:10.1016/j.mtadv.2022.100312
- Lin, M.-K.; Chen, G.-H.; Ho, C.-L.; Chueh, W.-C.; Hlevyack, J. A.; Kuo, C.-N.; Fu, T.-Y.; Lin, J.-J.; Lue, C. S.; Chang, W.-H.; Takagi, N.; Arafune, R.; Chiang, T.-C.; Lin, C.-L. Tip-Mediated Bandgap Tuning for Monolayer Transition Metal Dichalcogenides. ACS nano 2022, 16, 14918–14924. doi:10.1021/acsnano.2c05841
- Yue, S.; Zhou, H.; Feng, Y.; Wang, Y.; Sun, Z.; Geng, D.; Arita, M.; Kumar, S.; Shimada, K.; Cheng, P.; Chen, L.; Yao, Y.; Meng, S.; Wu, K.; Feng, B. Observation of One-Dimensional Dirac Fermions in Silicon Nanoribbons. Nano letters 2022, 22, 695–701. doi:10.1021/acs.nanolett.1c03862
- Salomon, E.; Angot, T.; Lew Yan Voon, L.; Le Lay, G. Silicene. Xenes; Elsevier, 2022; pp 1–25. doi:10.1016/b978-0-12-823824-0.00008-3
- Pizzochero, M.; Tepliakov, N. V.; Mostofi, A. A.; Kaxiras, E. Electrically Induced Dirac Fermions in Graphene Nanoribbons. Nano letters 2021, 21, 9332–9338. doi:10.1021/acs.nanolett.1c03596
- Yuhara, J.; Shimazu, H.; Kobayashi, M.; Ohta, A.; Miyazaki, S.; Takakura, S.-i.; Nakatake, M.; Le Lay, G. Epitaxial growth of massively parallel germanium nanoribbons by segregation through Ag(1 1 0) thin films on Ge(1 1 0). Applied Surface Science 2021, 550, 149236. doi:10.1016/j.apsusc.2021.149236
- Dávila, M. E.; Le Lay, G.; Cerdá, J. Reducing the dimensionality of novel materials: one-dimensional silicon nanoribbons. 2D Semiconductor Materials and Devices; Elsevier, 2020; pp 221–249. doi:10.1016/b978-0-12-816187-6.00008-x
- Roese, P.; Shamout, K.; Espeter, P.; Hönig, R.; Berges, U.; Westphal, C. Structure determination of substrate influenced silicon nano-ribbon growth. Applied Surface Science 2019, 467, 580–587. doi:10.1016/j.apsusc.2018.10.195
- Rzeszotarski, B.; Szafran, B. Electron spin inversion in gated silicene nanoribbons. Physical Review B 2018, 98, 075417. doi:10.1103/physrevb.98.075417
- Geng, D.; Yang, H. Y. Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides. Advanced materials (Deerfield Beach, Fla.) 2018, 30, 1800865. doi:10.1002/adma.201800865