Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer

Jayita Patwari, Samim Sardar, Bo Liu, Peter Lemmens and Samir Kumar Pal
Beilstein J. Nanotechnol. 2017, 8, 1705–1713. https://doi.org/10.3762/bjnano.8.171

Cite the Following Article

Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer
Jayita Patwari, Samim Sardar, Bo Liu, Peter Lemmens and Samir Kumar Pal
Beilstein J. Nanotechnol. 2017, 8, 1705–1713. https://doi.org/10.3762/bjnano.8.171

How to Cite

Patwari, J.; Sardar, S.; Liu, B.; Lemmens, P.; Pal, S. K. Beilstein J. Nanotechnol. 2017, 8, 1705–1713. doi:10.3762/bjnano.8.171

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.1 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Pan, N.; Ghosh, S.; Hasan, M. N.; Ahmed, S. A.; Chatterjee, A.; Patwari, J.; Bhattacharya, C.; Qurban, J.; Khder, A. S.; Pal, S. K. Plasmon-Coupled Donor–Acceptor Type Organic Sensitizer-Based Photoanodes for Enhanced Photovoltaic Activity: Key Information from Ultrafast Dynamical Study. Energy & Fuels 2022, 36, 9272–9281. doi:10.1021/acs.energyfuels.2c02350
  • Biswas, R.; Chatterjee, S. Effect of chenodeoxycholic acid as dye co-adsorbent and ZnO blocking layer in improving the performance of Rose Bengal dye based dye sensitized solar cells. Optical and Quantum Electronics 2022, 54. doi:10.1007/s11082-022-03775-9
  • Bera, A.; Hasan, M. N.; Chatterjee, A.; Mukherjee, D.; Pal, S. K. Dual Sensitization via Electron and Energy Harvesting in a Nanohybrid for Improvement of Therapeutic Efficacy. ACS physical chemistry Au 2021, 2, 171–178. doi:10.1021/acsphyschemau.1c00033
  • Ahmed, S. A.; Pan, N.; Altass, H. M.; Patwari, J.; Obaid, R. J.; Alessa, H.; Jassas, R. S.; Pal, S. K. Broad light harvesting under restricted environment: Photophysical understanding leading to enhanced reactive oxygen species generation. Journal of Photochemistry and Photobiology A: Chemistry 2021, 418, 113422. doi:10.1016/j.jphotochem.2021.113422
  • Watson, J.; Santaloci, T. J.; Cheema, H.; Fortenberry, R. C.; Delcamp, J. H. Full Visible Spectrum Panchromatic Triple Donor Dye for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2020, 124, 25211–25220. doi:10.1021/acs.jpcc.0c07003
  • Kandregula, G. R.; Mandal, S.; Prince, G.; Yadav, S. K.; Ramanujam, K. A computational study on boron dipyromethene ancillary acceptor-based dyes for dye-sensitized solar cells. New Journal of Chemistry 2020, 44, 4877–4886. doi:10.1039/c9nj05334d
  • Abdellah, I. M.; El-Shafei, A. The molecular engineering, synthesis and photovoltaic studies of a novel highly efficient Ru(II) complex incorporating a bulky TPA ancillary ligand for DSSCs: donor versus π-spacer effects. RSC advances 2020, 10, 610–619. doi:10.1039/c9ra06150a
  • Kumar, V.; Gupta, R.; Bansal, A. Role of chenodeoxycholic acid as co-additive in improving the efficiency of DSSCs. Solar Energy 2020, 196, 589–596. doi:10.1016/j.solener.2019.12.034
  • Rathnamalala, C. S. L.; Gayton, J. N.; Dorris, A.; Autry, S. A.; Meador, W. E.; Hammer, N. I.; Delcamp, J. H.; Scott, C. N. Donor–Acceptor–Donor NIR II Emissive Rhodindolizine Dye Synthesized by C–H Bond Functionalization. The Journal of organic chemistry 2019, 84, 13186–13193. doi:10.1021/acs.joc.9b01860
  • Pradhan, A.; Kiran, M. S.; Kapil, G.; Hayase, S.; Pandey, S. S. Wide wavelength photon harvesting in dye-sensitized solar cells utilizing cobalt complex redox electrolyte: Implication of surface passivation. Solar Energy Materials and Solar Cells 2019, 195, 122–133. doi:10.1016/j.solmat.2019.03.013
  • Patwari, J.; Joshi, H.; Mandal, H.; Roy, L.; Bhattacharya, C.; Lemmens, P.; Pal, S. K. Exciton dissociation in an NIR-active triohybrid nanocrystal leading to efficient generation of reactive oxygen species. Physical chemistry chemical physics : PCCP 2019, 21, 10667–10676. doi:10.1039/c9cp01923e
  • Patwari, J.; Chatterjee, A.; Ghadi, H.; Sharma, H.; Chakrabarti, S.; Pal, S. K. In situ measurement of temperature dependent picosecond resolved carrier dynamics in near infrared (NIR) sensitive device on action. The Review of scientific instruments 2019, 90, 043909. doi:10.1063/1.5050951
  • Patwari, J.; Shyamal, S.; Khan, T.; Ghadi, H.; Bhattacharya, C.; Chakrabarti, S.; Pal, S. K. Inversion of activity in DSSC for TiO2 and ZnO photo-anodes depending on the choice of sensitizer and carrier dynamics. Journal of Luminescence 2019, 207, 169–176. doi:10.1016/j.jlumin.2018.11.012
  • Procházková, L.; Pelikánová, I. T.; Mihokova, E.; Dědic, R.; Čuba, V. Novel scintillating nanocomposite for X-ray induced photodynamic therapy. Radiation Measurements 2019, 121, 13–17. doi:10.1016/j.radmeas.2018.12.008
  • Bagchi, D.; Rathnam, V. S. S.; Lemmens, P.; Banerjee, I.; Pal, S. K. NIR-Light-Active ZnO-Based Nanohybrids for Bacterial Biofilm Treatment. ACS omega 2018, 3, 10877–10885. doi:10.1021/acsomega.8b00716
  • Patwari, J.; Chatterjee, A.; Sardar, S.; Lemmens, P.; Pal, S. K. Ultrafast dynamics in co-sensitized photocatalysts under visible and NIR light irradiation. Physical chemistry chemical physics : PCCP 2018, 20, 10418–10429. doi:10.1039/c7cp08431e
Other Beilstein-Institut Open Science Activities