Coexistence of strongly buckled germanene phases on Al(111)

Weimin Wang and Roger I. G. Uhrberg
Beilstein J. Nanotechnol. 2017, 8, 1946–1951. https://doi.org/10.3762/bjnano.8.195

Supporting Information

Supporting Information File 1: Detailed information of the (3×3) and (√7×√7) models.
Format: PDF Size: 276.4 KB Download

Cite the Following Article

Coexistence of strongly buckled germanene phases on Al(111)
Weimin Wang and Roger I. G. Uhrberg
Beilstein J. Nanotechnol. 2017, 8, 1946–1951. https://doi.org/10.3762/bjnano.8.195

How to Cite

Wang, W.; Uhrberg, R. I. G. Beilstein J. Nanotechnol. 2017, 8, 1946–1951. doi:10.3762/bjnano.8.195

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.4 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Du, K.; Meng, Z.; Xi, Y.; Liu, N.; Zhang, J.; Xu, S.; Shi, Z.; Zhang, H.; Wang, S.; Feng, H.; Hao, W.; Pan, H.; Zhang, S.; Du, Y. Controllable Modulation of the Electronic Properties of a Two-Dimensional Ambipolar Semiconductor by Interface Ferroelectric Polarization. ACS applied materials & interfaces 2024, 16, 4181–4188. doi:10.1021/acsami.3c15191
  • Aghdasi, P.; Yousefi, S.; Ansari, R. Doping-induced changes in the structural and mechanical properties of germanene monolayers: A DFT-Based study. Materials Science in Semiconductor Processing 2024, 174, 108246. doi:10.1016/j.mssp.2024.108246
  • Yuhara, J.; Matsuba, D.; Ono, M.; Ohta, A.; Miyazaki, S.; Araidai, M.; Takakura, S.-i.; Nakatake, M.; Le Lay, G. Formation of germanene with free-standing lattice constant. Surface Science 2023, 738, 122382. doi:10.1016/j.susc.2023.122382
  • Guo, A.; Cao, F.; Ju, W.; Wang, Z.; Wang, H.; Li, G.-L.; Liu, G. Lattice thermal conductivity of silicon monolayer in biphenylene network. AIP Advances 2023, 13. doi:10.1063/5.0155409
  • Minissale, M.; Salomon, E.; Pappalardo, F.; Martin, C.; Muntwiler, M.; Angot, T.; Le Lay, G. The Renaissance and Golden Age of Epitaxial Dry Germanene. Crystals 2023, 13, 221. doi:10.3390/cryst13020221
  • Dien, V. K.; Lin, S.-Y.; Lee, C.-H.; Liu, H.-Y.; Duyen Huynh, T. M.; Han, N. T.; Thuy Tran, N. T.; Hien Nguyen, T. D.; Li, W.-B.; Lin, M.-F. Spin-diversified quasiparticle behaviors in rare-rare-earth La- and Eu-adsorbed germanene materials. Fundamental Physicochemical Properties of Germanene-Related Materials; Elsevier, 2023; pp 263–280. doi:10.1016/b978-0-443-15801-8.00008-6
  • Tiwari, A.; Bahadursha, N.; Palepu, J.; Chakraborty, S.; Kanungo, S. Comparative analysis of Boron, nitrogen, and phosphorous doping in monolayer of semi-metallic Xenes (Graphene, Silicene, and Germanene) - A first principle calculation based approach. Materials Science in Semiconductor Processing 2023, 153, 107121. doi:10.1016/j.mssp.2022.107121
  • Zia, A.; Cai, Z.-P.; Naveed, A. B.; Chen, J.-S.; Wang, K.-X. MXene, silicene and germanene: preparation and energy storage applications. Materials Today Energy 2022, 30, 101144. doi:10.1016/j.mtener.2022.101144
  • Yan, F.; Xu, S.; He, C.; He, C.; Zhao, C.; Xu, H. Identifying the alloy structures of germanene grown on Al(111). Physical Review B 2022, 106. doi:10.1103/physrevb.106.075405
  • Zhang, K.; Hanf, M.-C.; Sciacca, D.; Bernard, R.; Borensztein, Y.; Resta, A.; Garreau, Y.; Vlad, A.; Coati, A.; Lefebvre, I.; Derivaz, M.; Pirri, C.; Sonnet, P.; Stephan, R.; Prévot, G. Combined surface x-ray diffraction and density functional theory study of the germanene/Al(111)- (7×7)R19.1∘ structure. Physical Review B 2022, 106. doi:10.1103/physrevb.106.045412
  • Zandvliet, H. J. Germanene. Xenes; Elsevier, 2022; pp 27–48. doi:10.1016/b978-0-12-823824-0.00003-4
  • Lan, H.; Li, Y.; Liu, J.; Hu, W.; Zhu, X.; Ma, Y.; Niu, L.; Zhang, Z.; Jia, S.; Li, L.; Chen, Y.; Wang, J.; Zeng, M.; Fu, L. Self-Limiting Synthesis of Ultrathin Ge(110) Single Crystal via Liquid Metal. Small (Weinheim an der Bergstrasse, Germany) 2021, 18, e2106341. doi:10.1002/smll.202106341
  • Mizuno, S.; Ohta, A.; Suzuki, T.; Kageshima, H.; Yuhara, J.; Hibino, H. Correlation between structures and vibration properties of germanene grown by Ge segregation. Applied Physics Express 2021, 14, 125501. doi:10.35848/1882-0786/ac3185
  • Zhang, K.; Sciacca, D.; Hanf, M.-C.; Bernard, R.; Borensztein, Y.; Resta, A.; Garreau, Y.; Vlad, A.; Coati, A.; Lefebvre, I.; Derivaz, M.; Pirri, C.; Sonnet, P.; Stephan, R.; Prévot, G. Structure of germanene/Al(111): a two-layers surface alloy. 2021.
  • Zhang, K.; Sciacca, D.; Hanf, M.-C.; Bernard, R.; Borensztein, Y.; Resta, A.; Garreau, Y.; Vlad, A.; Coati, A.; Lefebvre, I.; Derivaz, M.; Pirri, C.; Sonnet, P.; Stephan, R.; Prévot, G. Structure of germanene/Al(111): a two-layers surface alloy. The Journal of Physical Chemistry C 2021, 125, 24702–24709. doi:10.1021/acs.jpcc.1c07585
  • Yuhara, J.; Muto, H.; Araidai, M.; Kobayashi, M.; Ohta, A.; Miyazaki, S.; Takakura, S.-i.; Nakatake, M.; Le Lay, G. Single germanene phase formed by segregation through Al(111) thin films on Ge(111). 2D Materials 2021, 8, 045039. doi:10.1088/2053-1583/ac2bef
  • Kubo, O.; Kinoshita, S.; Sato, H.; Miyamoto, K.; Sugahara, R.; Endo, S.; Tabata, H.; Okuda, T.; Katayama, M. Kagome-like structure of germanene on Al(111). Physical Review B 2021, 104, 085404. doi:10.1103/physrevb.104.085404
  • Zhou, D.; Li, H.; Si, N.; Li, H.; Fuchs, H.; Niu, T. Epitaxial Growth of Main Group Monoelemental 2D Materials. Advanced Functional Materials 2020, 31, 2006997. doi:10.1002/adfm.202006997
  • Chen, Q.-X.; Yang, H.; Chen, G. Theoretical studies on alloying of germanene supported on Al (111) substrate. Chinese Physics B 2020, 29, 108103. doi:10.1088/1674-1056/ab9c08
  • Khan, K.; Tareen, A. K.; Wang, L.; Aslam, M.; Ma, C.; Mahmood, N.; Ouyang, Z.; Zhang, H.; Guo, Z. Sensing Applications of Atomically Thin Group IV Carbon Siblings Xenes: Progress, Challenges, and Prospects. Advanced Functional Materials 2020, 31, 2005957. doi:10.1002/adfm.202005957
Other Beilstein-Institut Open Science Activities