Advances and challenges in the field of plasma polymer nanoparticles

Andrei Choukourov, Pavel Pleskunov, Daniil Nikitin, Valerii Titov, Artem Shelemin, Mykhailo Vaidulych, Anna Kuzminova, Pavel Solař, Jan Hanuš, Jaroslav Kousal, Ondřej Kylián, Danka Slavínská and Hynek Biederman
Beilstein J. Nanotechnol. 2017, 8, 2002–2014. https://doi.org/10.3762/bjnano.8.200

Cite the Following Article

Advances and challenges in the field of plasma polymer nanoparticles
Andrei Choukourov, Pavel Pleskunov, Daniil Nikitin, Valerii Titov, Artem Shelemin, Mykhailo Vaidulych, Anna Kuzminova, Pavel Solař, Jan Hanuš, Jaroslav Kousal, Ondřej Kylián, Danka Slavínská and Hynek Biederman
Beilstein J. Nanotechnol. 2017, 8, 2002–2014. https://doi.org/10.3762/bjnano.8.200

How to Cite

Choukourov, A.; Pleskunov, P.; Nikitin, D.; Titov, V.; Shelemin, A.; Vaidulych, M.; Kuzminova, A.; Solař, P.; Hanuš, J.; Kousal, J.; Kylián, O.; Slavínská, D.; Biederman, H. Beilstein J. Nanotechnol. 2017, 8, 2002–2014. doi:10.3762/bjnano.8.200

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 664.1 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Haidar, L. L.; Bilek, M.; Akhavan, B. Surface Bio-engineered Polymeric Nanoparticles. Small (Weinheim an der Bergstrasse, Germany) 2024, e2310876. doi:10.1002/smll.202310876
  • Protsak, M.; Biliak, K.; Nikitin, D.; Pleskunov, P.; Tosca, M.; Ali-Ogly, S.; Hanuš, J.; Hanyková, L.; Červenková, V.; Sergievskaya, A.; Konstantinidis, S.; Cornil, D.; Cornil, J.; Cieslar, M.; Košutová, T.; Popelář, T.; Ondič, L.; Choukourov, A. One-step synthesis of photoluminescent nanofluids by direct loading of reactively sputtered cubic ZrN nanoparticles into organic liquids. Nanoscale 2024, 16, 2452–2465. doi:10.1039/d3nr03999d
  • Biliak, K.; Protsak, M.; Pleskunov, P.; Nikitin, D.; Hanuš, J.; Ali-Ogly, S.; Šomvársky, J.; Tosca, M.; Cieslar, M.; Košutová, T.; Dopita, M.; Lopes Ferreira, F.; Choukourov, A. Plasmonic TiN, ZrN, and HfN Nanofluids for Solar-to-Heat Conversion. ACS Applied Nano Materials 2023, 6, 21642–21651. doi:10.1021/acsanm.3c03662
  • Saget, M.; Nuns, N.; Supiot, P.; Foissac, C.; Bellayer, S.; Dourgaparsad, K.; Royoux, P.-A.; Delaplace, G.; Thomy, V.; Coffinier, Y.; Jimenez, M. Ultra-hydrophobic biomimetic transparent bilayer thin film deposited by atmospheric pressure plasma. Surfaces and Interfaces 2023, 42, 103398. doi:10.1016/j.surfin.2023.103398
  • Snyders, R.; Hegemann, D.; Thiry, D.; Zabeida, O.; Klemberg-Sapieha, J.; Martinu, L. Foundations of plasma enhanced chemical vapor deposition of functional coatings. Plasma Sources Science and Technology 2023, 32, 74001–074001. doi:10.1088/1361-6595/acdabc
  • Solař, P.; Škorvánková, K.; Kuzminova, A.; Kylián, O. Challenges in the deposition of plasma polymer nanoparticles using gas aggregation source: Rebounding upon impact and how to land them on a substrate. Plasma Processes and Polymers 2023, 20. doi:10.1002/ppap.202300070
  • Kim, J. Y.; Jang, H.; Lee, Y. R.; Kim, K.; Suleiman, H. O.; Park, C.-S.; Shin, B. J.; Jung, E. Y.; Tae, H.-S. Nanostructured Polyaniline Films Functionalized through Auxiliary Nitrogen Addition in Atmospheric Pressure Plasma Polymerization. Polymers 2023, 15, 1626. doi:10.3390/polym15071626
  • Shelemin, A.; Krtous, Z.; Baloukas, B.; Zabeida, O.; Klemberg-Sapieha, J.; Martinu, L. Fabrication of Plasmonic Indium Tin Oxide Nanoparticles by Means of a Gas Aggregation Cluster Source. ACS omega 2023, 8, 6052–6058. doi:10.1021/acsomega.2c08070
  • Saget, M.; Nuns, N.; Supiot, P.; Foissac, C.; Dourgaparsad, K.; Royoux, P.-A.; Delaplace, G.; Thomy, V.; coffinier, y.; Jimenez, M. Ultra-Hydrophobic Biomimetic Transparent Bilayer Thin Film Deposited by Atmospheric Pressure Plasma. Elsevier BV 2023. doi:10.2139/ssrn.4518430
  • Kuzminova, A.; Hanková, A.; Khomiakova, N.; Cieslar, M.; Kylián, O. Tailoring the shape of vanadium nanoparticles produced by gas aggregation source. Vacuum 2022, 206, 111545. doi:10.1016/j.vacuum.2022.111545
  • Solař, P.; Škorvánková, K.; Kuzminova, A.; Kousal, J.; Kylián, O. Measurement of velocities of copper nanoparticles exiting a gas aggregation source. Vacuum 2022, 202, 111114. doi:10.1016/j.vacuum.2022.111114
  • Ciobanu, C. S.; Nica, I. C.; Dinischiotu, A.; Iconaru, S. L.; Chapon, P.; Bita, B.; Trusca, R.; Groza, A.; Predoi, D. Novel Dextran Coated Cerium Doped Hydroxyapatite Thin Films. Polymers 2022, 14, 1826. doi:10.3390/polym14091826
  • Nikiforov, A.; Ma, C.; Choukourov, A.; Palumbo, F. Plasma technology in antimicrobial surface engineering. Journal of Applied Physics 2022, 131. doi:10.1063/5.0066724
  • Ciobanu, C. S.; Iconaru, S. L.; Predoi, D.; Trușcă, R.-D.; Prodan, A. M.; Groza, A.; Chifiriuc, M. C.; Beuran, M. Fabrication of Novel Chitosan–Hydroxyapatite Nanostructured Thin Films for Biomedical Applications. Coatings 2021, 11, 1561. doi:10.3390/coatings11121561
  • Jebali, S.; de Oliveira, J. C.; Airoudj, A.; Josien, L.; Fioux, P.; Ferreira, I.; Roucoules, V.; Gall, F. B.-L. Thin films deposition versus nanoparticles formation: How can the desired polymer coating be obtained?. Plasma Processes and Polymers 2021, 19. doi:10.1002/ppap.202100091
  • Solař, P.; Kousal, J.; Hanuš, J.; Škorvánková, K.; Kuzminova, A.; Kylián, O. Mechanical time-of-flight filter based on slotted disks and helical rotor for measurement of velocities of nanoparticles. Scientific reports 2021, 11, 6415. doi:10.1038/s41598-021-85533-7
  • Dreghici, D. B.; Butoi, B.; Predoi, D.; Iconaru, S. L.; Stoican, O.; Groza, A. Chitosan-Hydroxyapatite Composite Layers Generated in Radio Frequency Magnetron Sputtering Discharge: From Plasma to Structural and Morphological Analysis of Layers. Polymers 2020, 12, 3065. doi:10.3390/polym12123065
  • Acsente, T.; Istrate, M. C.; Satulu, V.; Bita, B.; Dinescu, G. Operation of a magnetron sputtering gas aggregation cluster source in a plasma jet regime for synthesis of core-shell nanoparticles. Journal of Physics D: Applied Physics 2020, 54, 2LT01. doi:10.1088/1361-6463/abbb05
  • Boltnev, R. E.; Kononov, E. A.; Trukhachev, F. M.; Vasiliev, M. M.; Petrov, O. F. Synthesis of nanoclusters and quasy one-dimensional structures in glow discharge at T ≈ 2 K. Plasma Sources Science and Technology 2020, 29, 085004. doi:10.1088/1361-6595/aba2ab
  • Libenská, H.; Hanuš, J.; Košutová, T.; Dopita, M.; Kylián, O.; Cieslar, M.; Choukourov, A.; Biederman, H. Plasma‐based synthesis of iron carbide nanoparticles. Plasma Processes and Polymers 2020, 17, 2000105. doi:10.1002/ppap.202000105
Other Beilstein-Institut Open Science Activities