Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol

Xiao Shao, Weiyue Xin and Xiaohong Yin
Beilstein J. Nanotechnol. 2017, 8, 2264–2270. https://doi.org/10.3762/bjnano.8.226

Cite the Following Article

Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol
Xiao Shao, Weiyue Xin and Xiaohong Yin
Beilstein J. Nanotechnol. 2017, 8, 2264–2270. https://doi.org/10.3762/bjnano.8.226

How to Cite

Shao, X.; Xin, W.; Yin, X. Beilstein J. Nanotechnol. 2017, 8, 2264–2270. doi:10.3762/bjnano.8.226

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 679.8 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kusiak-Nejman, E.; Ćmielewska, K.; Ekiert, E.; Wanag, A.; Kapica-Kozar, J.; Pełech, I.; Narkiewicz, U.; Morawski, A. W. The comparison of photocatalytic reduction of CO2 on ZnO photocatalysts at slightly acidic and alkaline pH towards the formation of valuable products. Catalysis Today 2024, 432, 114599. doi:10.1016/j.cattod.2024.114599
  • Nair, R.; Gokuladoss, V. Synergistic adsorption and kinetic studies of heterostructured g-C3N4/TiO2 nano-photocatalyst under visible light for enhanced CO2 reduction. Environmental science and pollution research international 2023, 31, 2495–2510. doi:10.1007/s11356-023-31163-7
  • Qu, T.; Wei, S.; Xiong, Z.; Zhang, J.; Zhao, Y. Progress and prospect of CO2 photocatalytic reduction to methanol. Fuel Processing Technology 2023, 251, 107933. doi:10.1016/j.fuproc.2023.107933
  • Li, T.; Huang, H.; Wang, S.; Mi, Y.; Zhang, Y. Recent advances in 2D semiconductor nanomaterials for photocatalytic CO2 reduction. Nano Research 2023, 16, 8542–8569. doi:10.1007/s12274-022-5234-1
  • Kusiak-Nejman, E.; Ćmielewska, K.; Wanag, A.; Kapica-Kozar, J.; Ekiert, E. A.; Pełech, I.; Narkiewicz, U.; Morawski, A. W. Traditional Zno-Based Heterogeneous vs Novel Homogeneous Co2 Photoreduction Towards the Formation of Valuable Products. Elsevier BV 2023. doi:10.2139/ssrn.4530287
  • Vyas, S.; Ameta, R.; Ameta, R. Application of quantum dots in photocatalysis. Quantum Dots; Elsevier, 2023; pp 169–203. doi:10.1016/b978-0-12-824153-0.00009-4
  • Oksuz, A. E.; Yurddaskal, M.; Kartal, U.; Dikici, T.; Erol, M. ZnO nanostructures for photocatalytic degradation of methylene blue: effect of different anodization parameters. Journal of the Korean Ceramic Society 2022, 59, 859–868. doi:10.1007/s43207-022-00222-z
  • Ibrahim, K. M.; Saleh, W. R.; Al-Sammarraie, A. M. Structural and Optical Properties of ZnO Nanostructures Synthesized by Hydrothermal Method at Different Conditions. Nano Hybrids and Composites 2022, 35, 75–83. doi:10.4028/p-0w806z
  • Li, Y.; Chen, H.; Wang, L.; Wu, T.; Wu, Y.; He, Y. KNbO3/ZnO heterojunction harvesting ultrasonic mechanical energy and solar energy to efficiently degrade methyl orange. Ultrasonics sonochemistry 2021, 78, 105754. doi:10.1016/j.ultsonch.2021.105754
  • Patial, S.; Kumar, R.; Raizada, P.; Singh, P.; Van Le, Q.; Lichtfouse, E.; Le Tri Nguyen, D.; Nguyen, V.-H. Boosting light-driven CO2 reduction into solar fuels: Mainstream avenues for engineering ZnO-based photocatalysts. Environmental research 2021, 197, 111134. doi:10.1016/j.envres.2021.111134
  • Koutavarapu, R.; Tamtam, M. R.; Rao, M. C.; Peera, G.; Shim, J. Recent progress in transition metal oxide/sulfide quantum dots-based nanocomposites for the removal of toxic organic pollutants. Chemosphere 2021, 272, 129849. doi:10.1016/j.chemosphere.2021.129849
  • Zhao, Y.; Que, M.; Chen, J.; Yang, C. MXenes as co-catalysts for the solar-driven photocatalytic reduction of CO2. Journal of Materials Chemistry C 2020, 8, 16258–16281. doi:10.1039/d0tc02979c
  • He, Y.; Dai, X.; Ma, S.; Chen, L.; Feng, Z.; Xing, P.; Yu, J.; Wu, Y. Hydrothermal preparation of carbon modified KNb3O8 nanosheets for efficient photocatalytic H2 evolution. Ceramics International 2020, 46, 11421–11426. doi:10.1016/j.ceramint.2020.01.070
  • Liu, C.; Zhang, Q.; Hou, W.; Zou, Z. 2D Titanium/Niobium Metal Oxide‐Based Materials for Photocatalytic Application. Solar RRL 2020, 4, 2000070. doi:10.1002/solr.202000070
  • Liu, C.; Sun, Y.; Feng, Y.; Han, Z.; Zhao, Y.; Zhang, Q.; Zou, Z. Constructing N-Doped KNb 3 O 8 /g-C 3 N 4 Composite for Efficient Photocatalytic H 2 Generation and Degradation under Visible Light Irradiation. Catalysis Letters 2020, 150, 2798–2806. doi:10.1007/s10562-020-03188-x
  • Jo, Y. K.; Lee, J. M.; Son, S.; Hwang, S. J. 2D inorganic nanosheet-based hybrid photocatalysts: Design, applications, and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2019, 40, 150–190. doi:10.1016/j.jphotochemrev.2018.03.002
  • Nie, N.; He, F.; Zhang, L.; Cheng, B. Direct Z-scheme PDA-modified ZnO hierarchical microspheres with enhanced photocatalytic CO2 reduction performance. Applied Surface Science 2018, 457, 1096–1102. doi:10.1016/j.apsusc.2018.07.002
Other Beilstein-Institut Open Science Activities