Cite the Following Article
Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol
Xiao Shao, Weiyue Xin and Xiaohong Yin
Beilstein J. Nanotechnol. 2017, 8, 2264–2270.
https://doi.org/10.3762/bjnano.8.226
How to Cite
Shao, X.; Xin, W.; Yin, X. Beilstein J. Nanotechnol. 2017, 8, 2264–2270. doi:10.3762/bjnano.8.226
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 679.8 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Pinheiro, N. A.; Assis, M.; Fernandes, C. H.; de la Rosa, Y. N.; Silva, A. B.; Buzzo, F. A.; Ribeiro, C.; Lanza, M. R.; Maia, A. S.; Longo, E. Interfacial charge transfer in KNb3O8/Ag3PO4 heterostructures for emerging pollutant removal under visible-light. Journal of Alloys and Compounds 2025, 1040, 183665. doi:10.1016/j.jallcom.2025.183665
- Taher, A.; Rahman, M. A.; Mia, R.; Uddin, N.; Islam, M.; Khan, M. N. I.; Alam, M. K.; Alim, M. A. Quantum dot-based non-volatile memory: a comprehensive outlook. RSC advances 2025, 15, 14428–14462. doi:10.1039/d4ra08307e
- Liu, Y.-f.; Guo, R.-t.; Guo, S.-h.; Yu, L.-q.; Yan, J.-s.; Pan, W.-g. Recent progress of piezoelectric materials applied in photocatalytic CO2 reduction: A review. Journal of Environmental Chemical Engineering 2024, 12, 114782. doi:10.1016/j.jece.2024.114782
- Kusiak-Nejman, E.; Ćmielewska, K.; Ekiert, E.; Wanag, A.; Kapica-Kozar, J.; Pełech, I.; Narkiewicz, U.; Morawski, A. W. The comparison of photocatalytic reduction of CO2 on ZnO photocatalysts at slightly acidic and alkaline pH towards the formation of valuable products. Catalysis Today 2024, 432, 114599. doi:10.1016/j.cattod.2024.114599
- Nair, R.; Gokuladoss, V. Synergistic adsorption and kinetic studies of heterostructured g-C3N4/TiO2 nano-photocatalyst under visible light for enhanced CO2 reduction. Environmental science and pollution research international 2023, 31, 2495–2510. doi:10.1007/s11356-023-31163-7
- Qu, T.; Wei, S.; Xiong, Z.; Zhang, J.; Zhao, Y. Progress and prospect of CO2 photocatalytic reduction to methanol. Fuel Processing Technology 2023, 251, 107933. doi:10.1016/j.fuproc.2023.107933
- Li, T.; Huang, H.; Wang, S.; Mi, Y.; Zhang, Y. Recent advances in 2D semiconductor nanomaterials for photocatalytic CO2 reduction. Nano Research 2023, 16, 8542–8569. doi:10.1007/s12274-022-5234-1
- Vyas, S.; Ameta, R.; Ameta, R. Application of quantum dots in photocatalysis. Quantum Dots; Elsevier, 2023; pp 169–203. doi:10.1016/b978-0-12-824153-0.00009-4
- Kusiak-Nejman, E.; Ćmielewska, K.; Wanag, A.; Kapica-Kozar, J.; Ekiert, E. A.; Pełech, I.; Narkiewicz, U.; Morawski, A. W. Traditional Zno-Based Heterogeneous vs Novel Homogeneous Co2 Photoreduction Towards the Formation of Valuable Products. Elsevier BV 2023. doi:10.2139/ssrn.4530287
- Oksuz, A. E.; Yurddaskal, M.; Kartal, U.; Dikici, T.; Erol, M. ZnO nanostructures for photocatalytic degradation of methylene blue: effect of different anodization parameters. Journal of the Korean Ceramic Society 2022, 59, 859–868. doi:10.1007/s43207-022-00222-z
- Ibrahim, K. M.; Saleh, W. R.; Al-Sammarraie, A. M. Structural and Optical Properties of ZnO Nanostructures Synthesized by Hydrothermal Method at Different Conditions. Nano Hybrids and Composites 2022, 35, 75–83. doi:10.4028/p-0w806z
- Li, Y.; Chen, H.; Wang, L.; Wu, T.; Wu, Y.; He, Y. KNbO3/ZnO heterojunction harvesting ultrasonic mechanical energy and solar energy to efficiently degrade methyl orange. Ultrasonics sonochemistry 2021, 78, 105754. doi:10.1016/j.ultsonch.2021.105754
- Patial, S.; Kumar, R.; Raizada, P.; Singh, P.; Van Le, Q.; Lichtfouse, E.; Le Tri Nguyen, D.; Nguyen, V.-H. Boosting light-driven CO2 reduction into solar fuels: Mainstream avenues for engineering ZnO-based photocatalysts. Environmental research 2021, 197, 111134. doi:10.1016/j.envres.2021.111134
- Koutavarapu, R.; Tamtam, M. R.; Rao, M. C.; Peera, G.; Shim, J. Recent progress in transition metal oxide/sulfide quantum dots-based nanocomposites for the removal of toxic organic pollutants. Chemosphere 2021, 272, 129849. doi:10.1016/j.chemosphere.2021.129849
- Zhao, Y.; Que, M.; Chen, J.; Yang, C. MXenes as co-catalysts for the solar-driven photocatalytic reduction of CO2. Journal of Materials Chemistry C 2020, 8, 16258–16281. doi:10.1039/d0tc02979c
- He, Y.; Dai, X.; Ma, S.; Chen, L.; Feng, Z.; Xing, P.; Yu, J.; Wu, Y. Hydrothermal preparation of carbon modified KNb3O8 nanosheets for efficient photocatalytic H2 evolution. Ceramics International 2020, 46, 11421–11426. doi:10.1016/j.ceramint.2020.01.070
- Liu, C.; Zhang, Q.; Hou, W.; Zou, Z. 2D Titanium/Niobium Metal Oxide‐Based Materials for Photocatalytic Application. Solar RRL 2020, 4, 2000070. doi:10.1002/solr.202000070
- Liu, C.; Sun, Y.; Feng, Y.; Han, Z.; Zhao, Y.; Zhang, Q.; Zou, Z. Constructing N-Doped KNb 3 O 8 /g-C 3 N 4 Composite for Efficient Photocatalytic H 2 Generation and Degradation under Visible Light Irradiation. Catalysis Letters 2020, 150, 2798–2806. doi:10.1007/s10562-020-03188-x
- Jo, Y. K.; Lee, J. M.; Son, S.; Hwang, S. J. 2D inorganic nanosheet-based hybrid photocatalysts: Design, applications, and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2019, 40, 150–190. doi:10.1016/j.jphotochemrev.2018.03.002
- Nie, N.; He, F.; Zhang, L.; Cheng, B. Direct Z-scheme PDA-modified ZnO hierarchical microspheres with enhanced photocatalytic CO2 reduction performance. Applied Surface Science 2018, 457, 1096–1102. doi:10.1016/j.apsusc.2018.07.002