Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages

Dimitri Vanhecke, Dagmar A. Kuhn, Dorleta Jimenez de Aberasturi, Sandor Balog, Ana Milosevic, Dominic Urban, Diana Peckys, Niels de Jonge, Wolfgang J. Parak, Alke Petri-Fink and Barbara Rothen-Rutishauser
Beilstein J. Nanotechnol. 2017, 8, 2396–2409. https://doi.org/10.3762/bjnano.8.239

Supporting Information

Supporting Information File 1: Supporting Information contains in-depth descriptions of the experimental routines used in this manuscript.
Format: PDF Size: 2.1 MB Download

Cite the Following Article

Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages
Dimitri Vanhecke, Dagmar A. Kuhn, Dorleta Jimenez de Aberasturi, Sandor Balog, Ana Milosevic, Dominic Urban, Diana Peckys, Niels de Jonge, Wolfgang J. Parak, Alke Petri-Fink and Barbara Rothen-Rutishauser
Beilstein J. Nanotechnol. 2017, 8, 2396–2409. https://doi.org/10.3762/bjnano.8.239

How to Cite

Vanhecke, D.; Kuhn, D. A.; Jimenez de Aberasturi, D.; Balog, S.; Milosevic, A.; Urban, D.; Peckys, D.; de Jonge, N.; Parak, W. J.; Petri-Fink, A.; Rothen-Rutishauser, B. Beilstein J. Nanotechnol. 2017, 8, 2396–2409. doi:10.3762/bjnano.8.239

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 756.8 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Huang, B.; Li, J.-M.; Zang, X.-M.; Wang, M.; Pan, W.; Zhang, K.-D.; He, H.; Tan, Q.-G.; Miao, A.-J. Cell-excreted proteins mediate the interactions of differently sized silica nanoparticles during cellular uptake. Journal of hazardous materials 2024, 469, 133894. doi:10.1016/j.jhazmat.2024.133894
  • Sousa de Almeida, M.; Taladriz-Blanco, P.; Drasler, B.; Balog, S.; Yajan, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Cellular Uptake of Silica and Gold Nanoparticles Induces Early Activation of Nuclear Receptor NR4A1. Nanomaterials (Basel, Switzerland) 2022, 12, 690. doi:10.3390/nano12040690
  • de Boer, I.; Richards, C. J.; Åberg, C. Simultaneous Exposure of Different Nanoparticles Influences Cell Uptake. Pharmaceutics 2022, 14, 136. doi:10.3390/pharmaceutics14010136
  • Kus-Liśkiewicz, M.; Fickers, P.; Tahar, I. B. Biocompatibility and Cytotoxicity of Gold Nanoparticles: Recent Advances in Methodologies and Regulations. International journal of molecular sciences 2021, 22, 10952. doi:10.3390/ijms222010952
  • Ahmadpoor, F.; Masood, A.; Feliu, N.; Parak, W. J.; Shojaosadati, S. A. The Effect of Surface Coating of Iron Oxide Nanoparticles on Magnetic Resonance Imaging Relaxivity. Frontiers in Nanotechnology 2021, 3. doi:10.3389/fnano.2021.644734
  • Ye, Y.; Cota-Ruiz, K.; Cantu, J.; Valdes, C.; Gardea-Torresdey, J. L. Engineered Nanomaterials’ Fate Assessment in Biological Matrices: Recent Milestones in Electron Microscopy. ACS Sustainable Chemistry & Engineering 2021, 9, 4341–4356. doi:10.1021/acssuschemeng.1c00782
  • de Almeida, M. S.; Susnik, E.; Drasler, B.; Taladriz-Blanco, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chemical Society reviews 2021, 50, 5397–5434. doi:10.1039/d0cs01127d
  • Susnik, E.; Taladriz-Blanco, P.; Drasler, B.; Balog, S.; Petri-Fink, A.; Rothen-Rutishauser, B. Increased Uptake of Silica Nanoparticles in Inflamed Macrophages but Not upon Co-Exposure to Micron-Sized Particles. Cells 2020, 9, 2099. doi:10.3390/cells9092099
  • Suciu, M.; Ionescu, C. M.; Ciorita, A.; Tripon, S.; Nica, D. V.; Al-Salami, H.; Barbu-Tudoran, L. Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements. Beilstein journal of nanotechnology 2020, 11, 1092–1109. doi:10.3762/bjnano.11.94
  • Ashraf, S.; Said, A. H.; Hartmann, R.; Assmann, M.; Feliu, N.; Lenz, P.; Parak, W. J. Quantitative Particle Uptake by Cells as Analyzed by Different Methods. Angewandte Chemie (International ed. in English) 2019, 59, 5438–5453. doi:10.1002/anie.201906303
  • Ashraf, S.; Said, A. H.; Hartmann, R.; Assmann, M.; Feliu, N.; Lenz, P.; Parak, W. J. Analyse quantitativer Partikelaufnahme von Zellen über verschiedene Messmethoden. Angewandte Chemie 2019, 132, 5478–5494. doi:10.1002/ange.201906303
  • Dukhinova, M.; Prilepskii, A. Y.; Shtil, A. A.; Vinogradov, V. V. Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions. Nanomaterials (Basel, Switzerland) 2019, 9, 1631. doi:10.3390/nano9111631
  • Fong, W.-K.; Moore, T.; Balog, S.; Vanhecke, D.; Rodriguez-Lorenzo, L.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle Behaviour in Complex Media: Methods for Characterizing Physicochemical Properties, Evaluating Protein Corona Formation, and Implications for Biological Studies. Biological Responses to Nanoscale Particles; Springer International Publishing, 2019; pp 101–150. doi:10.1007/978-3-030-12461-8_5
  • Carrillo-Carrión, C.; Bocanegra, A. I.; Arnaiz, B.; Feliu, N.; Zhu, D.; Parak, W. J. Triple-Labeling of Polymer-Coated Quantum Dots and Adsorbed Proteins for Tracing their Fate in Cell Cultures. ACS nano 2019, 13, 4631–4639. doi:10.1021/acsnano.9b00728
  • Peckys, D. B.; Alansary, D.; Niemeyer, B. A.; de Jonge, N. Quantitative Studies of Membrane Proteins in Whole Cells with Different Methods of Liquid Phase Scanning Transmission Electron Microscopy. Microscopy and Microanalysis 2019, 25, 9–10. doi:10.1017/s1431927618015799
  • Peckys, D. B.; Dahmke, I. N.; Alansary, D.; Niemeyer, B. A.; de Jonge, N. Application of Liquid Phase Scanning Transmission Electron Microscopy Methods for the Quantitative Study of Membrane Proteins in Whole Cells. Microscopy and Microanalysis 2018, 24, 274–275. doi:10.1017/s1431927618001861
  • Wang, J.; Zhou, Z.; Zhang, F.; Xu, H.; Chen, W.; Jiang, T. A novel nanocomposite based on fluorescent turn-on gold nanostars for near-infrared photothermal therapy and self-theranostic caspase-3 imaging of glioblastoma tumor cell. Colloids and surfaces. B, Biointerfaces 2018, 170, 303–311. doi:10.1016/j.colsurfb.2018.06.021
  • Zhang, Q.; Lai, W.; Yin, T.; Zhang, C.; Yue, C.; Cheng, J.; Wang, K.; Yang, Y.; Cui, D.; Parak, W. J. Investigation of the Viability of Cells upon Co-Exposure to Gold and Iron Oxide Nanoparticles. Bioconjugate chemistry 2018, 29, 2120–2125. doi:10.1021/acs.bioconjchem.8b00349
Other Beilstein-Institut Open Science Activities