Cite the Following Article
Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation
Ling Liu, Jingjing Shi, Hongxia Cao, Ruiyu Wang and Ziwu Liu
Beilstein J. Nanotechnol. 2017, 8, 2425–2437.
https://doi.org/10.3762/bjnano.8.241
How to Cite
Liu, L.; Shi, J.; Cao, H.; Wang, R.; Liu, Z. Beilstein J. Nanotechnol. 2017, 8, 2425–2437. doi:10.3762/bjnano.8.241
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.4 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Ebrahimi, P.; Kumar, A.; Al-Marri, M. J. Understanding the formation of active site in copper ceria system for carbon dioxide catalytic conversion. Gas Science and Engineering 2025, 144, 205764. doi:10.1016/j.jgsce.2025.205764
- Yaseen, S. A.; Saif, F. A.; Undre, P. B. Functionalization of nanoceria a dual approach to anticancer and antifungal applications. Journal of applied biomaterials & functional materials 2025, 23, 22808000251354888. doi:10.1177/22808000251354888
- Javed, K.; Ren, Y.; Cao, Z.; Begum, B.; Liu, Y.; Zafar, A. U.; Li, X. Surfactant-Free Synthesis of Melon Seed-Like CeO2 and Ho@CeO2 Nanostructures with Enriched Oxygen Vacancies: Characterization and Their Enhanced Antibacterial Properties. ACS omega 2024, 9, 33528–33541. doi:10.1021/acsomega.4c01112
- Xu, J.; Bian, Y.; Tian, W.; Pan, C.; Wu, C.-E.; Xu, L.; Wu, M.; Chen, M. The Structures and Compositions Design of the Hollow Micro-Nano-Structured Metal Oxides for Environmental Catalysis. Nanomaterials (Basel, Switzerland) 2024, 14, 1190. doi:10.3390/nano14141190
- Vazan, M.; Tashkhourian, J.; Haghighi, B. Facile electrochemical determination of 5-fluorouracil as an important anti-cancer drug using CeO2–CuO nanocomposite modified carbon paste electrode. Materials Chemistry and Physics 2024, 315, 128950. doi:10.1016/j.matchemphys.2024.128950
- Geng, J.; Guo, S.; Zou, Z.; Yuan, Z.; Zhang, D.; Yan, X.; Ning, X.; Fan, X. 0D/2D CeO2/BiVO4 S-scheme photocatalyst for production of solar fuels from CO2. Fuel 2023, 333, 126417. doi:10.1016/j.fuel.2022.126417
- Nemiwal, M.; Sillanpää, M.; Banat, F.; Kumar, D. CeO2-encapsulated metal nanoparticles: Synthesis, properties and catalytic applications. Inorganic Chemistry Communications 2022, 143, 109739. doi:10.1016/j.inoche.2022.109739
- Li, S.-B.; Liu, L.; Zhang, Y.-J.; Xia, Z.-Q.; Wang, N.; Wang, Q.-D. Double-Shelled NiCo-LDH@MSiO3(M = Ni, Cu, Mn) Hollow Polyhedral Cages for Efficient Adsorption Toward Anionic Organic Pollutant. Nano 2022, 17. doi:10.1142/s1793292022500199
- Liu, L.; Xia, Z.-Q.; Li, S.-B.; Zhang, Y.-J.; Wang, N. MOF-derived double-shelled Fe(OH)3@NiCo-LDH hollow cubes and their efficient adsorption for anionic organic pollutant. Journal of Porous Materials 2022, 29, 931–945. doi:10.1007/s10934-022-01220-6
- Lee, Y.-H.; Kim, H.-M.; Jeong, C.-H.; Jeong, D.-W. Effects of precipitants on the catalytic performance of Cu/CeO2 catalysts for the water–gas shift reaction. Catalysis Science & Technology 2021, 11, 6380–6389. doi:10.1039/d1cy00964h
- Cam, T. S.; Omarov, S. O.; Chebanenko, M. I.; Sklyarova, A.; Nevedomskiy, V.; Popkov, V. I. One step closer to the low-temperature CO oxidation over non-noble CuO/CeO2 nanocatalyst: The effect of CuO loading. Journal of Environmental Chemical Engineering 2021, 9, 105373. doi:10.1016/j.jece.2021.105373
- Mourdikoudis, S.; Kostopoulou, A.; LaGrow, A. P. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2021, 8, 2004951. doi:10.1002/advs.202004951
- Mou, Q.; Zhenlian, G.; Chai, Y.; Liu, B.; Liu, C. Visible light assisted production of methanol from CO2 using CdS@CeO2 heterojunction. Journal of photochemistry and photobiology. B, Biology 2021, 219, 112205. doi:10.1016/j.jphotobiol.2021.112205
- Lim, A. M. H.; Zeng, H. C. Antisolvent Route to Ultrathin Hollow Spheres of Cerium Oxide for Enhanced CO Oxidation. ACS applied materials & interfaces 2021, 13, 20501–20510. doi:10.1021/acsami.1c01320
- Peyrovi, P.; Gillot, S.; Dacquin, J.-P.; Granger, P.; Dujardin, C. The Activity of CeVO 4 -Based Catalysts for Ammonia-SCR: Impact of Surface Cerium Enrichment. Catalysis Letters 2020, 151, 1003–1012. doi:10.1007/s10562-020-03363-0
- Yang, W.; Wang, X.; Song, S.; Zhang, H. Syntheses and Applications of Noble-Metal-free CeO2-Based Mixed-Oxide Nanocatalysts. Chem 2019, 5, 1743–1774. doi:10.1016/j.chempr.2019.04.009
- Nazari, P.; Tootoonchian, P.; Setayesh, S. R. Efficient degradation of AO7 by ceria-delafossite nanocomposite with non-inert support as a synergistic catalyst in electro-fenton process. Environmental pollution (Barking, Essex : 1987) 2019, 252, 749–757. doi:10.1016/j.envpol.2019.06.011
- Padikkaparambil, S.; Padi, J. P.; Vadery, V.; Sugunan, S.; Narayanan, B. N. Facile Preparation of Noble Metal–Free Cu-Doped CeO2 Oxidation Catalyst Suitable for Engine Exhaust Gas Treatment. Journal of Environmental Engineering 2019, 145, 04018131. doi:10.1061/(asce)ee.1943-7870.0001474
- Liu, L.; Shi, J.; Wang, R. Facile construction of Mn2O3@CeO2 core@shell cubes with enhanced catalytic activity toward CO oxidation. Journal of Solid State Chemistry 2019, 269, 419–427. doi:10.1016/j.jssc.2018.10.024