Cite the Following Article
Au nanostructure fabrication by pulsed laser deposition in open air: Influence of the deposition geometry
Rumen G. Nikov, Anna Og. Dikovska, Nikolay N. Nedyalkov, Georgi V. Avdeev and Petar A. Atanasov
Beilstein J. Nanotechnol. 2017, 8, 2438–2445.
https://doi.org/10.3762/bjnano.8.242
How to Cite
Nikov, R. G.; Dikovska, A. O.; Nedyalkov, N. N.; Avdeev, G. V.; Atanasov, P. A. Beilstein J. Nanotechnol. 2017, 8, 2438–2445. doi:10.3762/bjnano.8.242
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.6 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Dikovska, A.; Atanasova, G.; Dilova, T.; Baeva, A.; Avdeev, G.; Atanasov, P.; Nedyalkov, N. Picosecond Pulsed Laser Deposition of Metals and Metal Oxides. Materials (Basel, Switzerland) 2023, 16, 6364. doi:10.3390/ma16196364
- Bonjakhi, M.; Mahdieh, M. H. The Effects of Thermal Annealing and Postirradiation on Silver Nanoparticle Films Fabricated by Pulsed Laser Deposition in the Flowless Open Air. physica status solidi (a) 2023, 220. doi:10.1002/pssa.202300307
- Khan, T. M.; Aslam, N.; Iqbal, A.; Abbasi, S. A.; Ali, D. Cold Plasma Jet Coupled Nanosecond Laser Ablation Scheme For Plasmonic Nanostructured Surfaces. Advanced Materials Interfaces 2023, 10. doi:10.1002/admi.202300280
- Dikovska, A. O.; Nikov, R.; Avdeev, G.; Atanasova, G.; Dilova, T.; Karashanova, D.; Nedyalkov, N. ZnO/Zn2TiO4 composite nanostructures produced by laser ablation in air. Physica E: Low-dimensional Systems and Nanostructures 2023, 150, 115707. doi:10.1016/j.physe.2023.115707
- Socol, M.; Preda, N.; Breazu, C.; Rasoga, O. Pulsed Laser Deposition of Transparent Conductive Oxides on UV-NIL Patterned Substrates for Optoelectronic Applications. Thin Films - Deposition Methods and Applications; IntechOpen, 2023. doi:10.5772/intechopen.105798
- Krajewski, M.; Kaczmarek, A.; Tokarczyk, M.; Lewińska, S.; Włoczewski, M.; Bochenek, K.; Jarząbek, D. M.; Mościcki, T.; Hoffman, J.; Ślawska-Waniewska, A. Laser‐Assisted Growth of Fe3O4 Nanoparticle Films on Silicon Substrate in Open Air. physica status solidi (a) 2023, 220. doi:10.1002/pssa.202200786
- Ganash, E. A. Synthesis of silver nanoparticles using pulsed laser ablation in liquid: a review. Laser Physics Letters 2022, 20, 13001–013001. doi:10.1088/1612-202x/acab57
- Koleva, M. E.; Dikovska, A. O.; Nedyalkov, N. N.; Karashanova, D. Effect of laser annealing on the properties of Ag/ZnO nanostructures. Journal of Physics: Conference Series 2022, 2240, 12008–012008. doi:10.1088/1742-6596/2240/1/012008
- Socol, M.; Preda, N.; Socol, G. Organic Thin Films Deposited by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) for Photovoltaic Cell Applications: A Review. Coatings 2021, 11, 1368. doi:10.3390/coatings11111368
- Bonjakhi, M.; Mahdieh, M. H. Fabrication of silver nanoparticle films by pulsed laser deposition in flowless open air and studying the effects of laser fluence and number of pulses. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 626, 126990. doi:10.1016/j.colsurfa.2021.126990
- Nedyalkov, N. N.; Nikov, R.; Nikov, R.; Dikovska, A.; Karashanova, D.; Grochowska, K.; Karczewski, J.; Śliwiński, G.; Terakawa, M. Pulsed laser deposition of plasmonic structures in air by irradiation through the substrate. Thin Solid Films 2021, 734, 138836. doi:10.1016/j.tsf.2021.138836
- Nedyalkov, N. N.; Nikov, R.; Nikov, R.; Dikovska, A. Pulsed laser co-deposition in air: a way of fabricating composite nanostructures. Journal of Physics: Conference Series 2021, 1859, 012011. doi:10.1088/1742-6596/1859/1/012011
- Nikov, R.; Dikovska, A.; Avdeev, G.; Atanasova, G.; Karashanova, D.; Amoruso, S.; Ausanio, G.; Nedyalkov, N. N. Single-step fabrication of oriented composite nanowires by pulsed laser deposition in magnetic field. Materials Today Communications 2021, 26, 101717. doi:10.1016/j.mtcomm.2020.101717
- Khan, T. M.; Khan, S. U.-D.; Khan, S. U.-D.; Ahmad, A.; Abbasi, S. A.; Khan, E. M.; Mehigan, S. Silver nanoparticle films by flowing gas atmospheric pulsed laser deposition and application to surface‐enhanced Raman spectroscopy. International Journal of Energy Research 2020, 44, 11443–11452. doi:10.1002/er.5767
- Vu, T. T.; Tran, N. K.; Huynh, D. C. A comprehensive review on the sacrificial template-accelerated hydrolysis synthesis method for the fabrication of supported nanomaterials. Journal of the Iranian Chemical Society 2019, 17, 229–245. doi:10.1007/s13738-019-01764-6
- Atanasova, G.; Dikovska, A.; Dilova, T.; Georgieva, B.; Avdeev, G.; Stefanov, P.; Nedyalkov, N. N. Metal-oxide nanostructures produced by PLD in open air for gas sensor applications. Applied Surface Science 2019, 470, 861–869. doi:10.1016/j.apsusc.2018.11.178
- Dikovska, A.; Nedyalkov, N. N.; Dilova, T.; Atanasova, G.; Avdeev, G.; Stefanov, P. Gas-sensing properties of metal-oxide nanostructures produced by PLD. In 20th International Conference and School on Quantum Electronics: Laser Physics and Applications, SPIE, 2019; pp 43 ff. doi:10.1117/12.2516753
- Hughes, C.; McCann, R.; Eguileor, J.; Bagga, K.; Groarke, R.; Regan, F.; Brabazon, D. Modelling and optimisation of single-step laser-based gold nanostructure deposition with tunable optical properties. Optics & Laser Technology 2018, 108, 295–305. doi:10.1016/j.optlastec.2018.06.063
- Sancho-Fornes, G.; Avella-Oliver, M.; Carrascosa, J.; Fernández, E.; Brun, E. M.; Maquieira, Á. Disk-based one-dimensional photonic crystal slabs for label-free immunosensing. Biosensors & bioelectronics 2018, 126, 315–323. doi:10.1016/j.bios.2018.11.005
- Nikov, R.; Dikovska, A.; Atanasova, G.; Avdeev, G.; Nedyalkov, N. N. Magnetic-field-assisted formation of oriented nanowires produced by pld in open air. Applied Surface Science 2018, 458, 273–280. doi:10.1016/j.apsusc.2018.07.109