The role of ligands in coinage-metal nanoparticles for electronics

Ioannis Kanelidis and Tobias Kraus
Beilstein J. Nanotechnol. 2017, 8, 2625–2639. https://doi.org/10.3762/bjnano.8.263

Cite the Following Article

The role of ligands in coinage-metal nanoparticles for electronics
Ioannis Kanelidis and Tobias Kraus
Beilstein J. Nanotechnol. 2017, 8, 2625–2639. https://doi.org/10.3762/bjnano.8.263

How to Cite

Kanelidis, I.; Kraus, T. Beilstein J. Nanotechnol. 2017, 8, 2625–2639. doi:10.3762/bjnano.8.263

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 385.4 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Liu, W. C.; Prentice, J. C. A.; Patrick, C. E.; Watt, A. A. R. Enhancing Conductivity of Silver Nanowire Networks through Surface Engineering Using Bidentate Rigid Ligands. ACS applied materials & interfaces 2024, 16, 4150–4159. doi:10.1021/acsami.3c15207
  • Vasconcelos, I.; Santos, T. Nanotechnology Applications in Sepsis: Essential Knowledge for Clinicians. Pharmaceutics 2023, 15, 1682. doi:10.3390/pharmaceutics15061682
  • Munyayi, T. A.; Vorster, B. C.; Mulder, D. W. The Effect of Capping Agents on Gold Nanostar Stability, Functionalization, and Colorimetric Biosensing Capability. Nanomaterials (Basel, Switzerland) 2022, 12, 2470. doi:10.3390/nano12142470
  • Sartaliya, S.; Mahajan, R.; Sharma, R.; Dar, A. H.; Jayamurugan, G. New Water-Soluble Magnetic Field-Induced Drug Delivery System Obtained Via Preferential Molecular Marriage over Narcissistic Self-Sorting. Langmuir : the ACS journal of surfaces and colloids 2022, 38, 8999–9009. doi:10.1021/acs.langmuir.2c01403
  • Rao, A.; Roy, S.; Jain, V.; Pillai, P. P. Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS applied materials & interfaces 2022, 15, 25248–25274. doi:10.1021/acsami.2c05378
  • Rogolino, A.; Claes, N.; Cizaurre, J.; Marauri, A.; Jumbo-Nogales, A.; Lawera, Z.; Kruse, J.; Sanromán-Iglesias, M.; Zarketa, I.; Calvo, U.; Jimenez-Izal, E.; Rakovich, Y. P.; Bals, S.; Matxain, J. M.; Grzelczak, M. Metal-Polymer Heterojunction in Colloidal-Phase Plasmonic Catalysis. The journal of physical chemistry letters 2022, 13, 2264–2272. doi:10.1021/acs.jpclett.1c04242
  • Zhan, S.; Jiang, J.; Zeng, Z.; Wang, Y.; Cui, H. DNA-templated coinage metal nanostructures and their applications in bioanalysis and biomedicine. Coordination Chemistry Reviews 2022, 455, 214381. doi:10.1016/j.ccr.2021.214381
  • Li, L.; You, H.; Zhao, L.; Zhang, R.; Amin, M. U.; Fang, J. Switchable Binding Energy of Ionic Compounds and Application in Customizable Ligand Exchange for Colloid Nanocrystals. The journal of physical chemistry letters 2021, 12, 5271–5278. doi:10.1021/acs.jpclett.1c00669
  • Sarkar, S.; Gupta, V.; Tsuda, T.; Gour, J.; Singh, A.; Aftenieva, O.; Steiner, A. M.; Hoffmann, M.; Kumar, S.; Fery, A.; Joseph, J.; König, T. A. F. Plasmonic Charge Transfers in Large-Scale Metallic and Colloidal Photonic Crystal Slabs. Advanced Functional Materials 2021, 31, 2011099. doi:10.1002/adfm.202011099
  • Gillet, A.; Cher, S.; Tassé, M.; Blon, T.; Alves, S.; Izzet, G.; Chaudret, B.; Proust, A.; Demont, P.; Volatron, F.; Tricard, S. Polarizability is a key parameter for molecular electronics. Nanoscale horizons 2021, 6, 271–276. doi:10.1039/d0nh00583e
  • Komarov, P. V.; Baburkin, P. O.; Ivanov, V. A.; Li, Y.-L.; Chen, S.-A.; Khokhlov, A. R. Mesoscale Simulations on Morphology Design in Conjugated Polymers and Inorganic Nanoparticles Composite for Bulk Heterojunction Solar Cells. Solar RRL 2020, 4, 2000352. doi:10.1002/solr.202000352
  • Kahkhaie, V. R.; Yousefi, M.; Darbani, S.; Mobashery, A. Enhanced Raman intensity of pollutants and explosives by using 2-mercaptoethanol controlled pyramid Ag-iron nanostructure embedded graphene oxide platform. Photonics and Nanostructures - Fundamentals and Applications 2020, 41, 100801. doi:10.1016/j.photonics.2020.100801
  • Kaminsky, C. J.; Chu, S. B.; Sayler, R. I.; Oh, S.; Smith, P. W.; Wright, J.; Britt, R. D.; Surendranath, Y. Dissociative Ligand Exchange at Identical Molecular and Carbon Nanoparticle Binding Sites. Chemistry of Materials 2020, 32, 8540–8552. doi:10.1021/acs.chemmater.0c02838
  • Serpell, C. J.; Cookson, J.; Beer, P. D. N-Functionalised Imidazoles as Stabilisers for Metal Nanoparticles in Catalysis and Anion Binding. ChemistryOpen 2020, 9, 683–690. doi:10.1002/open.202000145
  • Yucknovsky, A.; Mondal, S.; Burnstine-Townley, A.; Foqara, M.; Amdursky, N. Use of Photoacids and Photobases To Control Dynamic Self-Assembly of Gold Nanoparticles in Aqueous and Nonaqueous Solutions. Nano letters 2019, 19, 3804–3810. doi:10.1021/acs.nanolett.9b00952
  • Ameri, M.; Al-Mudhaffer, M. F.; Almyahi, F.; Fardell, G. C.; Marks, M.; Al-Ahmad, A. Y.; Fahy, A.; Andersen, T. R.; Elkington, D.; Feron, K.; Dickinson, M.; Samavat, F.; Dastoor, P. C.; Griffith, M. J. Role of Stabilizing Surfactants on Capacitance, Charge, and Ion Transport in Organic Nanoparticle-Based Electronic Devices. ACS applied materials & interfaces 2019, 11, 10074–10088. doi:10.1021/acsami.8b19820
  • Grzelczak, M.; Liz-Marzán, L. M.; Klajn, R. Stimuli-responsive self-assembly of nanoparticles. Chemical Society reviews 2019, 48, 1342–1361. doi:10.1039/c8cs00787j
  • Hathoot, A. A.; Hassan, K. M.; Ali, A. G.; Shatla, A.; Baltruschat, H.; Abdel-Azzem, M. Mono and dual hetero-structured M@poly-1,2 diaminoanthraquinone (M = Pt, Pd and Pt–Pd) catalysts for the electrooxidation of small organic fuels in alkaline medium. RSC advances 2019, 9, 1849–1858. doi:10.1039/c8ra09342c
  • Cure, J.; Piettre, K.; Sournia-Saquet, A.; Coppel, Y.; Esvan, J.; Chaudret, B.; Fau, P. A Novel Method for the Metallization of 3D Silicon Induced by Metastable Copper Nanoparticles. ACS applied materials & interfaces 2018, 10, 32838–32848. doi:10.1021/acsami.8b09428
Other Beilstein-Institut Open Science Activities