Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

Wojciech Szmyt, Carlos Guerra and Ivo Utke
Beilstein J. Nanotechnol. 2017, 8, 64–73. https://doi.org/10.3762/bjnano.8.7

Cite the Following Article

Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders
Wojciech Szmyt, Carlos Guerra and Ivo Utke
Beilstein J. Nanotechnol. 2017, 8, 64–73. https://doi.org/10.3762/bjnano.8.7

How to Cite

Szmyt, W.; Guerra, C.; Utke, I. Beilstein J. Nanotechnol. 2017, 8, 64–73. doi:10.3762/bjnano.8.7

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 809.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Werlen, V.; Vocke, R.; Brauner, C.; Dransfeld, C.; Michaud, V.; Rytka, C. A model for the consolidation of hybrid textiles considering air entrapment, dissolution and diffusion. Composites Part A: Applied Science and Manufacturing 2023, 166, 107413. doi:10.1016/j.compositesa.2022.107413
  • Kuzmin, V.; Safiullin, K.; Stanislavovas, A.; Baibekov, E.; Tagirov, M. Diffusion Anisotropy of Gaseous Helium-3 in Ordered Aerogels at Low Temperatures. The journal of physical chemistry. B 2023, 127, 1459–1470. doi:10.1021/acs.jpcb.2c08251
  • Fang, C.; Chai, Q.; Lin, X.; Xing, Y.; Zhou, Z. Experiments and simulation of the secondary effect during focused Ga ion beam induced deposition of adjacent nanostructures. Materials & Design 2021, 209, 109993. doi:10.1016/j.matdes.2021.109993
  • Guerra-Nuñez, C.; Putz, B.; Savu, R.; Li, M.; Zhang, Y.; Erni, R.; Mochkalev, S.; Michler, J.; Park, H. G.; Utke, I. The nucleation, radial growth, and bonding of TiO2 deposited via atomic layer deposition on single-walled carbon nanotubes. Applied Surface Science 2021, 555, 149662. doi:10.1016/j.apsusc.2021.149662
  • Szmyt, W.; Guerra-Nuñez, C.; Dransfeld, C.; Utke, I. Solving the inverse Knudsen problem: Gas diffusion in random fibrous media. Journal of Membrane Science 2021, 620, 118728. doi:10.1016/j.memsci.2020.118728
  • Mahuli, N.; Halder, D.; Paul, A.; Sarkar, S. K. Atomic layer deposition of amorphous antimony sulfide (a-Sb2S3) as semiconductor sensitizer in extremely thin absorber solar cell. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2020, 38, 032407. doi:10.1116/6.0000031
  • Crisp, R. W.; Hashemi, F. S. M.; Alkemade, J.; Kirkwood, N.; Grimaldi, G.; Kinge, S.; Siebbeles, L. D. A.; van Ommen, J.; Houtepen, A. J. Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation. Advanced Materials Interfaces 2020, 7, 1901600. doi:10.1002/admi.201901600
  • Kane, D.; Davis, R. H.; Vanfleet, R. Penetration depth variation in atomic layer deposition on multiwalled carbon nanotube forests. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2019, 37, 030907. doi:10.1116/1.5085051
Other Beilstein-Institut Open Science Activities