Investigation of growth dynamics of carbon nanotubes

Marianna V. Kharlamova
Beilstein J. Nanotechnol. 2017, 8, 826–856. https://doi.org/10.3762/bjnano.8.85

Cite the Following Article

Investigation of growth dynamics of carbon nanotubes
Marianna V. Kharlamova
Beilstein J. Nanotechnol. 2017, 8, 826–856. https://doi.org/10.3762/bjnano.8.85

How to Cite

Kharlamova, M. V. Beilstein J. Nanotechnol. 2017, 8, 826–856. doi:10.3762/bjnano.8.85

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 291.4 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Choe, M.; Chung, H.; Kim, W.; Jang, Y.; Wang, Z.; Lee, Z. In situ transmission electron microscopy of temperature-dependent carbon nanofiber and carbon nanotube growth from ethanol vapor. Carbon 2024, 219, 118843. doi:10.1016/j.carbon.2024.118843
  • Ge, L.; Zuo, M.; Wang, Y.; Wang, R.; Rong, N.; Qi, Z.; Zhao, C.; Zhang, Y.; Xu, C. A review of comprehensive utilization of biomass to synthesize carbon nanotubes: From chemical vapor deposition to microwave pyrolysis. Journal of Analytical and Applied Pyrolysis 2024, 177, 106320. doi:10.1016/j.jaap.2023.106320
  • Zainal, M. T.; Hamzah, N.; Abdul Wahid, M.; Kamaruzaman, N.; Chong, C. T.; Ani, M. H.; Amzin, S.; Das, T.; Mohd Yasin, M. F. Zero-dimensional model for the prediction of carbon nanotube (CNT) growth region in heterogeneous methane-flame environment. Carbon Letters 2023, 33, 2199–2210. doi:10.1007/s42823-023-00579-z
  • Turaeva, N.; Kim, Y.; Kuljanishvili, I. An extended model for chirality selection in single-walled carbon nanotubes. Nanoscale advances 2023, 5, 3684–3690. doi:10.1039/d3na00192j
  • Ibrahim, M. H.; Hamzah, N.; Mohd Yusop, M. Z.; Septiani, N. L. W.; Mohd Yasin, M. F. Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone. Beilstein journal of nanotechnology 2023, 14, 741–750. doi:10.3762/bjnano.14.61
  • Kharlamova, M. V.; Kramberger, C. Electrochemistry of Carbon Materials: Progress in Raman Spectroscopy, Optical Absorption Spectroscopy, and Applications. Nanomaterials (Basel, Switzerland) 2023, 13, 640. doi:10.3390/nano13040640
  • Bertran-Serra, E.; Musheghyan-Avetisyan, A.; Chaitoglou, S.; Amade-Rovira, R.; Alshaikh, I.; Pantoja-Suárez, F.; Andújar-Bella, J.-L.; Jawhari, T.; Perez-del-Pino, A.; Gyorgy, E. Temperature-modulated synthesis of vertically oriented atomic bilayer graphene nanowalls grown on stainless steel by inductively coupled plasma chemical vapour deposition. Applied Surface Science 2023, 610, 155530. doi:10.1016/j.apsusc.2022.155530
  • Kharlamova, M. V.; Kramberger, C. Phemenology of Filling, Investigation of Growth Kinetics and Electronic Properties for Applications of Filled Single-Walled Carbon Nanotubes. Nanomaterials (Basel, Switzerland) 2023, 13, 314. doi:10.3390/nano13020314
  • Kharlamova, M. V. Kinetics, Electronic Properties of Filled Carbon Nanotubes Investigated with Spectroscopy for Applications. Nanomaterials (Basel, Switzerland) 2022, 13, 176. doi:10.3390/nano13010176
  • Gakis, G. P.; Termine, S.; Trompeta, A.-F. A.; Aviziotis, I. G.; Charitidis, C. A. Unraveling the mechanisms of carbon nanotube growth by chemical vapor deposition. Chemical Engineering Journal 2022, 445, 136807. doi:10.1016/j.cej.2022.136807
  • Zounmenou, F.; Hontinfinde, R.; Hontinfinde, F. Growth kinetics of a single-walled carbon nanotube: Exact and simulation results. Physica A: Statistical Mechanics and its Applications 2022, 594, 127013. doi:10.1016/j.physa.2022.127013
  • Mughal, S.; Sehole, H. A. H.; Mumtaz, A.; Niazi, M. B. K.; Adnan, F.; Zhao, H.; Janjua, H. A. Synthesis of non-cytotoxic Co3O4 nanocatalysts for thermocatalytic methane decomposition by resource recovery. Biomass Conversion and Biorefinery 2022, 14, 3927–3945. doi:10.1007/s13399-022-02606-x
  • Shavelkina, M.; Ivanov, P.; Amirov, R.; Bocharov, A. Effect of the precursor aggregate state on the synthesis of CNTs in a DC plasma jet. Diamond and Related Materials 2022, 123, 108844. doi:10.1016/j.diamond.2022.108844
  • Rusu, M. M.; Vulpoi, A.; Maurin, I.; Cotet, L. C.; Pop, L. C.; Fort, C. I.; Baia, M.; Baia, L.; Florea, I. Thermal Evolution of C-Fe-Bi Nanocomposite System: From Nanoparticle Formation to Heterogeneous Graphitization Stage. Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 2022, 28, 1–329. doi:10.1017/s1431927622000241
  • Burdanova, M. G.; Kharlamova, M. V.; Kramberger, C.; Nikitin, M. P. Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine. Nanomaterials (Basel, Switzerland) 2021, 11, 3020. doi:10.3390/nano11113020
  • Kharlamova, M. V.; Kramberger, C. Applications of Filled Single-Walled Carbon Nanotubes: Progress, Challenges, and Perspectives. Nanomaterials (Basel, Switzerland) 2021, 11, 2863. doi:10.3390/nano11112863
  • Dalouji, V.; Rahimi, N.; Goudarzi, S.; Solaymani, S. MWCNTs synthesized on Ni Cu NPs @ a-C:H films: study of the dielectric relaxation time, the free carriers concentration and the dissipation factor with different Ni layers thickness. Optical and Quantum Electronics 2021, 53. doi:10.1007/s11082-021-03289-w
  • Turaeva, N.; Kuljanishvili, I. Effects of electronic structure of catalytic nanoparticles on carbon nanotube growth. Carbon Trends 2021, 5, 100092. doi:10.1016/j.cartre.2021.100092
  • Thonganantakul, O.; Srinives, S.; Chaiwat, W.; Kerdnawee, K.; Suttiponparnit, K.; Charinpanitkul, T. Temperature dependence of iron oxide-graphene oxide properties for synthesis of carbon nanotube/graphene hybrid material. Catalysis Today 2021, 375, 79–86. doi:10.1016/j.cattod.2020.01.016
  • Sánchez-Bastardo, N.; Schlögl, R.; Ruland, H. Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology from Fossil Fuels to a Renewable and Sustainable Hydrogen Economy. Industrial & Engineering Chemistry Research 2021, 60, 11855–11881. doi:10.1021/acs.iecr.1c01679

Patents

  • NODA SUGURU; CHEN ZHONGMING; KIM DONG YOUNG; UEDA SHUNSUKE; HABA EISUKE. Carbon-containing metal catalyst particles for carbon nanotube synthesis and method of producing the same, catalyst carrier support, and method of producing carbon nanotubes. US 10357765 B2, July 23, 2019.
  • NODA SUGURU; CHEN ZHONGMING; KIM DONG YOUNG; UEDA SHUNSUKE; HABA EISUKE. CARBON-CONTAINING METAL CATALYST PARTICLES FOR CARBON NANOTUBE SYNTHESIS AND METHOD OF PRODUCING THE SAME, CATALYST CARRIER SUPPORT, AND METHOD OF PRODUCING CARBON NANOTUBES. US 20150147262 A1, May 28, 2015.
Other Beilstein-Institut Open Science Activities