Excitation of nonradiating magnetic anapole states with azimuthally polarized vector beams

Aristeidis G. Lamprianidis and Andrey E. Miroshnichenko
Beilstein J. Nanotechnol. 2018, 9, 1478–1490. https://doi.org/10.3762/bjnano.9.139

Supporting Information

Supporting Information features the proof for the multipolar decomposition of an arbitrary plane wave and the formulas with which the elements of the T-matrix are calculated based on the EBCM method. It also includes a plot of the proposed phase mask for Figure 1c, electric and magnetic field plots corresponding to the anapole condition discussed in Figure 1b and Figure 1c, and some extra 2D plots of the multipolar decomposition of the scattered field of cylinders of various geometries illuminated by an azimuthally polarized, rotationally symmetric, focused beam.

Supporting Information File 1: Additional computational data.
Format: PDF Size: 1.3 MB Download

Cite the Following Article

Excitation of nonradiating magnetic anapole states with azimuthally polarized vector beams
Aristeidis G. Lamprianidis and Andrey E. Miroshnichenko
Beilstein J. Nanotechnol. 2018, 9, 1478–1490. https://doi.org/10.3762/bjnano.9.139

How to Cite

Lamprianidis, A. G.; Miroshnichenko, A. E. Beilstein J. Nanotechnol. 2018, 9, 1478–1490. doi:10.3762/bjnano.9.139

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.1 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhang, Z.; Zhu, Z. Anapole states and transverse displacement sensing based on the interaction between cylindrical vector beams and Au core-Si shell nanodisks. Optics express 2024, 32, 27999. doi:10.1364/oe.530904
  • Cai, H.; Hu, H.; Zhan, Q. Enhancing Scattering Circular Dichroism of Chiral Substrate via Mie Resonances. IEEE Photonics Journal 2024, 16, 1–6. doi:10.1109/jphot.2023.3346310
  • Camacho Morales, R.; Zangeneh Kamali, K.; Xu, L.; Miroshnichenko, A.; Rahmani, M.; Neshev, D. Nonlinear phenomena empowered by resonant dielectric nanostructures. All-Dielectric Nanophotonics; Elsevier, 2024; pp 329–364. doi:10.1016/b978-0-32-395195-1.00016-8
  • Whittam, M. R.; Lamprianidis, A. G.; Augenstein, Y.; Rockstuhl, C. Identifying regions of minimal backscattering by a relativistically moving sphere. Physical Review A 2023, 108. doi:10.1103/physreva.108.043510
  • So, S.; Mun, J.; Park, J.; Rho, J. Revisiting the Design Strategies for Metasurfaces: Fundamental Physics, Optimization, and Beyond. Advanced materials (Deerfield Beach, Fla.) 2023, 35, e2206399. doi:10.1002/adma.202206399
  • Pradhan, M.; Sharma, S.; Bhaktha B. N., S.; Varshney, S. K. Engineered pseudo and hybrid anapole states in a silicon nanoresonator metasurface. Journal of the Optical Society of America B 2023, 40, 986. doi:10.1364/josab.482596
  • Barati Sedeh, H.; Litchinitser, N. M. Singular optics empowered by engineered optical materials. Nanophotonics 2023, 12, 2687–2716. doi:10.1515/nanoph-2023-0030
  • Huang, L.; Xu, L.; Powell, D. A.; Padilla, W. J.; Miroshnichenko, A. E. Resonant leaky modes in all-dielectric metasystems: Fundamentals and applications. Physics Reports 2023, 1008, 1–66. doi:10.1016/j.physrep.2023.01.001
  • Barati Sedeh, H.; Pires, D. G.; Chandra, N.; Gao, J.; Tsvetkov, D.; Terekhov, P.; Kravchenko, I.; Litchinitser, N. Manipulation of Scattering Spectra with Topology of Light and Matter. Laser & Photonics Reviews 2023, 17. doi:10.1002/lpor.202200472
  • Ambrosio, L. A.; Gouesbet, G. A Localized Approximation Approach for the Calculation of Beam Shape Coefficients of Acoustic and Ultrasonic Bessel Beams. SSRN Electronic Journal 2023. doi:10.2139/ssrn.4534886
  • Mun, J.; Kim, H.; Moon, S.-W.; Rho, J. Scattering by circularly symmetric structured optical fields in stratified media. Physical Review B 2022, 106. doi:10.1103/physrevb.106.184414
  • Díaz-Escobar, E.; Barreda, Á. I.; Griol, A.; Martínez, A. Experimental observation of higher-order anapoles in individual silicon disks under in-plane illumination. Applied Physics Letters 2022, 121. doi:10.1063/5.0108438
  • Pan, G.-M.; Yang, L.-F.; Shu, F.-Z.; Meng, Y.-L.; Hong, Z.; Yang, Z.-J. Tailoring magnetic dipole emission by coupling to magnetic plasmonic anapole states. Photonics Research 2022, 10, 2032. doi:10.1364/prj.461415
  • Wang, Y.; Zhou, C.; Huo, Y.; Cui, P.; Song, M.; Liu, T.; Zhao, C.; Liao, Z.; Zhang, Z.; Xie, Y. Efficient Excitation and Tuning of Multi-Fano Resonances with High Q-Factor in All-Dielectric Metasurfaces. Nanomaterials (Basel, Switzerland) 2022, 12, 2292. doi:10.3390/nano12132292
  • González-Colsa, J.; Olarte-Plata, J. D.; Bresme, F.; Albella, P. Enhanced Thermo-optical Response by Means of Anapole Excitation. The journal of physical chemistry letters 2022, 13, 6230–6235. doi:10.1021/acs.jpclett.2c00870
  • Masoudian Saadabad, R.; Huang, L.; Evlyukhin, A. B.; Miroshnichenko, A. E. Multifaceted anapole: from physics to applications [Invited]. Optical Materials Express 2022, 12, 1817. doi:10.1364/ome.456070
  • Dey, U.; Agasti, S.; Li, Y.; Hesselbarth, J. Analysis of Anapole States in Dielectric Spheres and Application to Near-Field Enhancement. IEEE Transactions on Antennas and Propagation 2022, 70, 1144–1156. doi:10.1109/tap.2021.3111312
  • Dey, U. Review of Techniques for Particle Spectroscopy From DC to Terahertz Frequency. IEEE Transactions on Instrumentation and Measurement 2022, 71, 1–18. doi:10.1109/tim.2022.3193171
  • Hu, H.; Zhan, Q. Enhanced Chiral Mie Scattering by a Dielectric Sphere within a Superchiral Light Field. Physics 2021, 3, 747–756. doi:10.3390/physics3030046
  • Zheng, Z.; Komar, A.; Kamali, K. Z.; Noble, J.; Whichello, L.; Miroshnichenko, A. E.; Rahmani, M.; Neshev, D. N.; Xu, L. Planar narrow bandpass filter based on Si resonant metasurface. Journal of Applied Physics 2021, 130, 053105. doi:10.1063/5.0058768
Other Beilstein-Institut Open Science Activities