Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

Nino Schön, Deniz Cihan Gunduz, Shicheng Yu, Hermann Tempel, Roland Schierholz and Florian Hausen
Beilstein J. Nanotechnol. 2018, 9, 1564–1572. https://doi.org/10.3762/bjnano.9.148

Cite the Following Article

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3
Nino Schön, Deniz Cihan Gunduz, Shicheng Yu, Hermann Tempel, Roland Schierholz and Florian Hausen
Beilstein J. Nanotechnol. 2018, 9, 1564–1572. https://doi.org/10.3762/bjnano.9.148

How to Cite

Schön, N.; Gunduz, D. C.; Yu, S.; Tempel, H.; Schierholz, R.; Hausen, F. Beilstein J. Nanotechnol. 2018, 9, 1564–1572. doi:10.3762/bjnano.9.148

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.2 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Deshpande, A. V.; Bansod, S. G. Effect of sintering temperature on sol–gel synthesized NASICON-type Li1.3Al0.3Ti1.7(PO4)3 ceramic solid electrolyte. Journal of Materials Science: Materials in Electronics 2024, 35. doi:10.1007/s10854-023-11766-z
  • Hasegawa, G.; Kuwata, N.; Ohnishi, T.; Takada, K. Visualization and evaluation of lithium diffusion at grain boundaries in Li0.29La0.57TiO3 solid electrolytes using secondary ion mass spectrometry. Journal of Materials Chemistry A 2024, 12, 731–738. doi:10.1039/d3ta05012b
  • Luo, C.; Shuai, Q.; Zhao, G.; Zhang, M.; Wu, B.; Fu, X.; Sun, Y.; Wang, Y.; Hua, Q. Insights into the Effects of Co-Regulated Factors on Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte Preparation: Sources, Calcination Temperatures, and Sintering Temperatures. ACS applied materials & interfaces 2023, 15, 48110–48121. doi:10.1021/acsami.3c09236
  • Lakshmanan, A.; Gurusamy, R.; Venkatachalam, S. Enhanced total ionic conductivity of NASICON-type solid-state electrolyte Li1+xAlxTi2−x(PO4)3. Ionics 2023, 29, 5123–5138. doi:10.1007/s11581-023-05222-5
  • Hausen, F.; Scheer, N.; Ying, B.; Kleiner, K. Correlation of the electronic structure and Li‐ion mobility with modulus and hardness in LiNi0.6Co0.2Mn0.2O2 cathodes by combined near edge X‐ray absorption finestructure spectroscopy, atomic force microscopy, and nanoindentation. Electrochemical Science Advances 2023. doi:10.1002/elsa.202300017
  • Campos, J. V.; Lavagnini, I. R.; Zallocco, V. M.; Jesus, L. M.; Rodrigues, A. C. M. Ultrafast crystallization and sintering of Li1.3Al0.3Ti1.7(PO4)3 glass through flash sinter‐crystallization. Journal of the American Ceramic Society 2023, 107, 1806–1821. doi:10.1111/jace.19393
  • Shakel, Z.; Loureiro, F. J.; Melo, B.; Pukazhselvan, D.; Mikhalev, S. M.; Shaula, A. L.; Fagg, D. P. Investigating the grain boundary features of lithium titanium phosphate as an electrolyte for all-solid-state lithium-ion batteries and their optimization by boron doping. Journal of Energy Storage 2023, 65, 107387. doi:10.1016/j.est.2023.107387
  • Bobrov, G.; Kedzior, S. A.; Pervez, S. A.; Govedarica, A.; Kloker, G.; Fichtner, M.; Michaelis, V. K.; Bernard, G. M.; Veelken, P. M.; Hausen, F.; Trifkovic, M. Coupling Particle Ordering and Spherulitic Growth for Long-Term Performance of Nanocellulose/Poly(ethylene oxide) Electrolytes. ACS applied materials & interfaces 2023, 15, 1996–2008. doi:10.1021/acsami.2c16402
  • Jetybayeva, A.; Schön, N.; Oh, J.; Kim, J.; Kim, H.; Park, G.; Lee, Y.-G.; Eichel, R.-A.; Kleiner, K.; Hausen, F.; Hong, S. Unraveling the State of Charge-Dependent Electronic and Ionic Structure–Property Relationships in NCM622 Cells by Multiscale Characterization. ACS Applied Energy Materials 2022, 5, 1731–1742. doi:10.1021/acsaem.1c03173
  • Badur, S.; Renz, D.; Cronau, M.; Göddenhenrich, T.; Dietzel, D.; Roling, B.; Schirmeisen, A. Characterization of Vegard strain related to exceptionally fast Cu-chemical diffusion in Cu[Formula: see text]Mo[Formula: see text]S[Formula: see text] by an advanced electrochemical strain microscopy method. Scientific reports 2021, 11, 18133. doi:10.1038/s41598-021-96602-2
  • Borzutzki, K.; Dong, K.; Nair, J. R.; Wolff, B.; Hausen, F.; Eichel, R.-A.; Winter, M.; Manke, I.; Brunklaus, G. Lithium deposition in single-ion conducting polymer electrolytes. Cell Reports Physical Science 2021, 2, 100496. doi:10.1016/j.xcrp.2021.100496
  • Xu, Q.; Tsai, C.-L.; Song, D.; Basak, S.; Kungl, H.; Tempel, H.; Hausen, F.; Yu, S.; Eichel, R.-A. Insights into the reactive sintering and separated specific grain/grain boundary conductivities of Li1.3Al0.3Ti1.7(PO4)3. Journal of Power Sources 2021, 492, 229631. doi:10.1016/j.jpowsour.2021.229631
  • Schön, N.; Schierholz, R.; Jesse, S.; Yu, S.; Eichel, R.-A.; Balke, N.; Hausen, F. Signal Origin of Electrochemical Strain Microscopy and Link to Local Chemical Distribution in Solid State Electrolytes. Small methods 2021, 5, 2001279. doi:10.1002/smtd.202001279
  • Park, G.; Kim, H.; Oh, J.; Choi, Y.; Ovchinnikova, O. S.; Min, S.; Lee, Y.-G.; Hong, S. Quantitative Measurement of Li-Ion Concentration and Diffusivity in Solid-State Electrolyte. ACS Applied Energy Materials 2021, 4, 784–790. doi:10.1021/acsaem.0c02660
  • Lin, Y. Y.; Bin Yong, A. X.; Gustafson, W. J.; Reedy, C. N.; Ertekin, E.; Krogstad, J. A.; Perry, N. H. Toward design of cation transport in solid-state battery electrolytes: Structure-dynamics relationships. Current Opinion in Solid State and Materials Science 2020, 24, 100875. doi:10.1016/j.cossms.2020.100875
  • Dias, J. A.; Santagneli, S. H.; Messaddeq, Y. Methods for Lithium Ion NASICON Preparation: From Solid-State Synthesis to Highly Conductive Glass-Ceramics. The Journal of Physical Chemistry C 2020, 124, 26518–26539. doi:10.1021/acs.jpcc.0c07385
  • Yu, J.; Duan, S.; Huang, B.; Jin, H.; Xie, S.; Li, J. Spatially Resolved Electrochemical Strain of Solid‐State Electrolytes via High Resolution Sequential Excitation and Its Implication on Grain Boundary Impedance. Small Methods 2020, 4, 2000308. doi:10.1002/smtd.202000308
  • Chen, C.; Zhou, T.; Danilov, D. D.; Gao, L.; Benning, S.; Schön, N.; Tardif, S.; Simons, H.; Hausen, F.; Schülli, T. U.; Eichel, R.-A.; Notten, P. H. L. Impact of dual-layer solid-electrolyte interphase inhomogeneities on early-stage defect formation in Si electrodes. Nature communications 2020, 11, 3283. doi:10.1038/s41467-020-17104-9
  • Chen, C.; Sun, Y.; He, L.; Kotobuki, M.; Hanc, E.; Chen, Y.; Zeng, K.; Lu, L. Microstructural and Electrochemical Properties of Al- and Ga-Doped Li7La3Zr2O12 Garnet Solid Electrolytes. ACS Applied Energy Materials 2020, 3, 4708–4719. doi:10.1021/acsaem.0c00347
  • Simolka, M.; Kaess, H.; Friedrich, K. A. Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique. Beilstein journal of nanotechnology 2020, 11, 583–596. doi:10.3762/bjnano.11.46
Other Beilstein-Institut Open Science Activities