Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

Amelie Axt, Ilka M. Hermes, Victor W. Bergmann, Niklas Tausendpfund and Stefan A. L. Weber
Beilstein J. Nanotechnol. 2018, 9, 1809–1819. https://doi.org/10.3762/bjnano.9.172

Supporting Information

Supporting Information File 1: Additional figures.
Format: PDF Size: 1.7 MB Download

Cite the Following Article

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices
Amelie Axt, Ilka M. Hermes, Victor W. Bergmann, Niklas Tausendpfund and Stefan A. L. Weber
Beilstein J. Nanotechnol. 2018, 9, 1809–1819. https://doi.org/10.3762/bjnano.9.172

How to Cite

Axt, A.; Hermes, I. M.; Bergmann, V. W.; Tausendpfund, N.; Weber, S. A. L. Beilstein J. Nanotechnol. 2018, 9, 1809–1819. doi:10.3762/bjnano.9.172

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 539.8 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Meyer, E.; Pawlak, R.; Glatzel, T. Scanning probe microscopy. Encyclopedia of Condensed Matter Physics; Elsevier, 2024; pp 51–62. doi:10.1016/b978-0-323-90800-9.00213-4
  • Ishida, N.; Mano, T. Quantitative characterization of built-in potential profile across GaAs p-n junctions using Kelvin probe force microscopy with qPlus sensor AFM. Nanotechnology 2023, 35, 65708–065708. doi:10.1088/1361-6528/ad0b5e
  • Checa, M.; Fuhr, A. S.; Sun, C.; Vasudevan, R.; Ziatdinov, M.; Ivanov, I.; Yun, S. J.; Xiao, K.; Sehirlioglu, A.; Kim, Y.; Sharma, P.; Kelley, K. P.; Domingo, N.; Jesse, S.; Collins, L. High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy. Nature communications 2023, 14, 7196. doi:10.1038/s41467-023-42583-x
  • Grévin, B.; Husainy, F.; Aldakov, D.; Aumaître, C. Dual-heterodyne Kelvin probe force microscopy. Beilstein journal of nanotechnology 2023, 14, 1068–1084. doi:10.3762/bjnano.14.88
  • Eftekhari, Z.; Rezaei, N.; Stokkel, H.; Zheng, J.-Y.; Cerreta, A.; Hermes, I.; Nguyen, M.; Rijnders, G.; Saive, R. Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination. Beilstein journal of nanotechnology 2023, 14, 1059–1067. doi:10.3762/bjnano.14.87
  • Yalcinkaya, Y.; Rohrbeck, P. N.; Schütz, E. R.; Fakharuddin, A.; Schmidt‐Mende, L.; Weber, S. A. Nanoscale Surface Photovoltage Spectroscopy. Advanced Optical Materials 2023. doi:10.1002/adom.202301318
  • Chang, B.; Li, H.; Wang, L.; Pan, L.; Wu, Y.; Liu, Z.; Yin, L. Molecular Ferroelectric with Directional Polarization Field for Efficient Tin‐Based Perovskite Solar Cells. Advanced Functional Materials 2023, 33. doi:10.1002/adfm.202305852
  • Kim, D. S.; Dominguez, R. C.; Mayorga-Luna, R.; Ye, D.; Embley, J.; Tan, T.; Ni, Y.; Liu, Z.; Ford, M.; Gao, F. Y.; Arash, S.; Watanabe, K.; Taniguchi, T.; Kim, S.; Shih, C.-K.; Lai, K.; Yao, W.; Yang, L.; Li, X.; Miyahara, Y. Electrostatic moiré potential from twisted hexagonal boron nitride layers. Nature materials 2023, 23, 65–70. doi:10.1038/s41563-023-01637-7
  • Shinke, Y.; Mori, T.; Iwata, A.; Mohd Nor, M. A. b.; Kurosawa, K.; Inagaki, M.; Sekimoto, S.; Takamiya, K.; Oki, Y.; Ohtsuki, T.; Igarashi, Y.; Okuda, T. Technique for estimating the charge number of individual radioactive particles using Kelvin probe force microscopy. Aerosol Science and Technology 2023, 57, 758–768. doi:10.1080/02786826.2023.2221726
  • da Lisca, M.; Alvarez, J.; Connolly, J. P.; Vaissiere, N.; Mekhazni, K.; Decobert, J.; Kleider, J.-P. Cross-sectional Kelvin probe force microscopy on III-V epitaxial multilayer stacks: challenges and perspectives. Beilstein journal of nanotechnology 2023, 14, 725–737. doi:10.3762/bjnano.14.59
  • Zhang, Y.; Wang, R.; Tan, Z. Crystal growth of two-dimensional organic–inorganic hybrid perovskites and their application in photovoltaics. Journal of Materials Chemistry A 2023, 11, 11607–11636. doi:10.1039/d3ta01496g
  • Hackl, T.; Poik, M.; Schitter, G. Quantitative Surface Potential Measurements by AC Electrostatic Force Microscopy. In 2023 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE, 2023. doi:10.1109/i2mtc53148.2023.10176066
  • Zhou, J.; Wang, H.; Wang, J.; Chen, R.; Liu, S.; Gao, Y.; Pan, Y.; Ren, F.; Meng, X.; Yang, Z.; Liu, Z.; Chen, W. Dual Cross‐Linked Functional Layers for Stable and Efficient Inverted Perovskite Solar Cells. Solar RRL 2023, 7. doi:10.1002/solr.202300230
  • Zhou, J.; Tian, X.; Chen, R.; Chen, W.; Meng, X.; Guan, X.; Wang, J.; Liu, S.; Ren, F.; Zhang, S.; Zhang, Y.; Liu, Z.; Chen, W. An ultra-thin chemical vapor deposited polymer interlayer to achieve highly improved stability of perovskite solar cell. Chemical Engineering Journal 2023, 461, 141914. doi:10.1016/j.cej.2023.141914
  • Su, C.; Wang, R.; Tao, J.; Shen, J.; Wang, D.; Wang, L.; Fu, G.; Yang, S.; Yuan, M.; He, T. Fluoride-assisted crystallization regulation enables efficient and stable wide-bandgap perovskite photovoltaic. Journal of Materials Chemistry A 2023, 11, 6565–6573. doi:10.1039/d2ta08966a
  • Arrighi, A.; Ullberg, N.; Derycke, V.; Grévin, B. A simple KPFM-based approach for electrostatic- free topographic measurements: the case of MoS2on SiO2. Nanotechnology 2023, 34, 215705. doi:10.1088/1361-6528/acbe02
  • Wang, S.; Bidinakis, K.; Haese, C.; Hasenburg, F. H.; Yildiz, O.; Ling, Z.; Frisch, S.; Kivala, M.; Graf, R.; Blom, P. W. M.; Weber, S. A. L.; Pisula, W.; Marszalek, T. Modification of Two-Dimensional Tin-Based Perovskites by Pentanoic Acid for Improved Performance of Field-Effect Transistors. Small (Weinheim an der Bergstrasse, Germany) 2023, 19, e2207426. doi:10.1002/smll.202207426
  • Szostak, R.; de Souza Gonçalves, A.; de Freitas, J. N.; Marchezi, P. E.; de Araújo, F. L.; Tolentino, H. C. N.; Toney, M. F.; das Chagas Marques, F.; Nogueira, A. F. In Situ and Operando Characterizations of Metal Halide Perovskite and Solar Cells: Insights from Lab-Sized Devices to Upscaling Processes. Chemical reviews 2023, 123, 3160–3236. doi:10.1021/acs.chemrev.2c00382
  • Diliegros-Godines, C.; García-Zaldívar, O.; Flores-Ruiz, F.; Fernández-Domínguez, E.; Torres-Delgado, G.; Castanedo-Pérez, R. Impedance spectroscopy of Au/Cu2Te/CdTe/CdS/Cd2SnO4/glass solar cells. Ceramics International 2023, 49, 6699–6707. doi:10.1016/j.ceramint.2022.10.244
  • Ishida, N. Utilizing the surface potential of a solid electrolyte region as the potential reference in Kelvin probe force microscopy. Beilstein journal of nanotechnology 2022, 13, 1558–1563. doi:10.3762/bjnano.13.129
Other Beilstein-Institut Open Science Activities