Recent highlights in nanoscale and mesoscale friction

Andrea Vanossi, Dirk Dietzel, Andre Schirmeisen, Ernst Meyer, Rémy Pawlak, Thilo Glatzel, Marcin Kisiel, Shigeki Kawai and Nicola Manini
Beilstein J. Nanotechnol. 2018, 9, 1995–2014. https://doi.org/10.3762/bjnano.9.190

Cite the Following Article

Recent highlights in nanoscale and mesoscale friction
Andrea Vanossi, Dirk Dietzel, Andre Schirmeisen, Ernst Meyer, Rémy Pawlak, Thilo Glatzel, Marcin Kisiel, Shigeki Kawai and Nicola Manini
Beilstein J. Nanotechnol. 2018, 9, 1995–2014. https://doi.org/10.3762/bjnano.9.190

How to Cite

Vanossi, A.; Dietzel, D.; Schirmeisen, A.; Meyer, E.; Pawlak, R.; Glatzel, T.; Kisiel, M.; Kawai, S.; Manini, N. Beilstein J. Nanotechnol. 2018, 9, 1995–2014. doi:10.3762/bjnano.9.190

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 3.6 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Gupta, A.; Ranjith, K. Spectral boundary integral equation method for simulation of 2D and 3D slip ruptures at bi‐material interfaces. International Journal for Numerical and Analytical Methods in Geomechanics 2023, 48, 123–153. doi:10.1002/nag.3632
  • Gianetti, M. M.; Guerra, R.; Vanossi, A.; Urbakh, M.; Manini, N. Electric-field frictional effects in confined zwitterionic molecules. Physical chemistry chemical physics : PCCP 2023, 25, 19037–19045. doi:10.1039/d3cp00914a
  • Çelik, Ü.; Çelik, K.; Kehribar, İ.; Çelik, S.; Baykara, M. Z. High-speed nanoscale tribology enabled by combined QCM/AFM. Applied Surface Science 2023, 619, 156772. doi:10.1016/j.apsusc.2023.156772
  • Cihan, E.; Dietzel, D.; Jany, B. R.; Schirmeisen, A. Effect of Amorphous-Crystalline Phase Transition on Superlubric Sliding. Physical review letters 2023, 130, 126205. doi:10.1103/physrevlett.130.126205
  • Yamada, Y.; Ichii, T.; Utsunomiya, T.; Kimura, K.; Kobayashi, K.; Yamada, H.; Sugimura, H. Fundamental and higher eigenmodes of qPlus sensors with a long probe for vertical-lateral bimodal atomic force microscopy. Nanoscale advances 2023, 5, 840–850. doi:10.1039/d2na00686c
  • Hill, J. P.; Payne, D. T.; Sun, K.; Matsushita, Y.; Nakata, A.; Mishra, P.; Uchihashi, T.; Nakanishi, W.; Ariga, K.; Nakayama, T.; Kawai, S. On-Surface Translational Activity of Porphyrin Chromophore Molecules. Advances in Atom and Single Molecule Machines; Springer International Publishing, 2022; pp 83–103. doi:10.1007/978-3-031-16930-4_5
  • Acikgoz, O.; Guerrero, E.; Yanilmaz, A.; Dagdeviren, O. E.; Çelebi, C.; Strubbe, D. A.; Baykara, M. Z. Intercalation leads to inverse layer dependence of friction on chemically doped MoS2. Nanotechnology 2022, 34, 15706–015706. doi:10.1088/1361-6528/ac9393
  • Zhou, A.-L.; Bai, Z.-W.; Hou, H.-Y.; Han, Y.-L.; Mei, J.-N. Atomic simulations of nanoscale friction behavior in polycrystalline alloy 690. Materials Research Express 2022, 9, 106512. doi:10.1088/2053-1591/ac95fb
  • Nolin, A.; Pierson, K.; Hlibok, R.; Lo, C.-Y.; Kayser, L. V.; Dhong, C. Controlling fine touch sensations with polymer tacticity and crystallinity. Soft matter 2022, 18, 3928–3940. doi:10.1039/d2sm00264g
  • Gianetti, M. M.; Guerra, R.; Vanossi, A.; Urbakh, M.; Manini, N. Thermal Friction Enhancement in Zwitterionic Monolayers. The journal of physical chemistry. C, Nanomaterials and interfaces 2022, 126, 2797–2805. doi:10.1021/acs.jpcc.1c09542
  • Brazil, O.; Pethica, J. B.; Pharr, G. M. The contribution of plastic sink-in to the static friction of single asperity microscopic contacts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2021, 477. doi:10.1098/rspa.2021.0502
  • Özoğul, A.; Gnecco, E.; Baykara, M. Z. Nanolithography-induced exfoliation of layered materials. Applied Surface Science Advances 2021, 6, 100146. doi:10.1016/j.apsadv.2021.100146
  • Özoğul, A.; Jany, B. R.; Krok, F.; Gnecco, E.; Baykara, M. Z. Influence of Interfacial Oxidation on Friction in Structural Superlubricity. Tribology Letters 2021, 69, 1–8. doi:10.1007/s11249-021-01475-1
  • Brazil, O.; Pethica, J. B.; Pharr, G. M. The contribution of plastic sink-in to the static friction of single asperity microscopic contacts. 2021.
  • Zakaria, A. Z. Atomistic finite element modeling of superlubricity in long double walled carbon nanotubes. Materials Today Communications 2021, 26, 101797. doi:10.1016/j.mtcomm.2020.101797
  • Khomenko, A. V.; Zakharov, M. V. Atomistic modelling of frictional anisotropy of palladium nanoparticles on graphene. Condensed Matter Physics 2021, 24, 13301. doi:10.5488/cmp.24.13301
  • Baykara, M. Z. Structural superlubricity under ambient conditions. Superlubricity; Elsevier, 2021; pp 113–130. doi:10.1016/b978-0-444-64313-1.00007-7
  • Rodriguez, A.; Jaman, M.; Acikgoz, O.; Bidou, W.; Yu, J.; Grützmacher, P. G.; Rosenkranz, A.; Baykara, M. Z. The potential of Ti3C2TX nano-sheets (MXenes) for nanoscale solid lubrication revealed by friction force microscopy. Applied Surface Science 2021, 535, 147664. doi:10.1016/j.apsusc.2020.147664
  • Yunt, E.; Fadaie, M.; Müstecaplıoğlu, Ö. E.; Smith, C. M. Internal geometric friction in a Kitaev-chain heat engine. Physical Review B 2020, 102, 155423. doi:10.1103/physrevb.102.155423
  • Cammarata, A.; Polcar, T. Control of energy dissipation in sliding low-dimensional materials. Physical Review B 2020, 102, 085409. doi:10.1103/physrevb.102.085409
Other Beilstein-Institut Open Science Activities