Cite the Following Article
Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view
Mattia Scardamaglia and Carla Bittencourt
Beilstein J. Nanotechnol. 2018, 9, 2015–2031.
https://doi.org/10.3762/bjnano.9.191
How to Cite
Scardamaglia, M.; Bittencourt, C. Beilstein J. Nanotechnol. 2018, 9, 2015–2031. doi:10.3762/bjnano.9.191
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 590.1 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Song, Y.; Maia, R. A.; Ritleng, V.; Louis, B.; Shanmugam, S. Nickel Nanoparticles Confined in Core–Shell Derived from Covalent Organic Framework for the Efficient Electrocatalytic NO Reduction to NH3. ACS Applied Energy Materials 2024, 7, 2514–2523. doi:10.1021/acsaem.4c00048
- Kodithuwakku, U. S.; Wanninayake, N.; Thomas, M. P.; Guiton, B. S.; Kim, D. Y. Unlocking efficiency in oxygen reduction reaction: Synergistic edge dopants of nitrogen and boron in carbon nano onions. Electrochimica Acta 2023, 471, 143365. doi:10.1016/j.electacta.2023.143365
- Mane, R. S.; Pradhan, S.; Somkuwar, V.; Bhattacharyya, R.; Ghosh, P. C.; Jha, N. An electron "donor–acceptor–donor" strategy to activate ZIF-67 as a cathode material for fuel cells and zinc ion hybrid supercapacitor. Reaction Chemistry & Engineering 2023, 8, 891–907. doi:10.1039/d2re00357k
- Nugroho, A.; Nursanto, E. B.; Curie, C. A.; Oktaviano, H. S.; Ainurrachma, F.; Trisunaryanti, W. Utilisation of gelatin as nitrogen source for N-doped carbon nanotubes and its performance for the oxygen reduction reaction. Advances in Natural Sciences: Nanoscience and Nanotechnology 2022, 13, 35004–035004. doi:10.1088/2043-6262/ac8660
- Chadha, U.; Selvaraj, S. K.; Ashokan, H.; Hariharan, S. P.; Mathew Paul, V.; Venkatarangan, V.; Paramasivam, V. Complex Nanomaterials in Catalysis for Chemically Significant Applications: From Synthesis and Hydrocarbon Processing to Renewable Energy Applications. Advances in Materials Science and Engineering 2022, 2022, 1–72. doi:10.1155/2022/1552334
- Chen, G.; Yuan, H. Effects of carbon nanomaterials on the migration and fate of organic pollutants in the ecological environment. Ferroelectrics 2021, 570, 206–217. doi:10.1080/00150193.2020.1762424
- Alekseeva, O. K.; Pushkareva, I. V.; Pushkarev, A. S.; Fateev, V. N. Graphene and Graphene-Like Materials for Hydrogen Energy. Nanotechnologies in Russia 2020, 15, 273–300. doi:10.1134/s1995078020030027
- Ebikade, E. O.; Wang, Y.; Samulewicz, N.; Hasa, B.; Vlachos, D. G. Active learning-driven quantitative synthesis–structure–property relations for improving performance and revealing active sites of nitrogen-doped carbon for the hydrogen evolution reaction. Reaction Chemistry & Engineering 2020, 5, 2134–2147. doi:10.1039/d0re00243g
- Komarova, N. S.; Konev, D. V.; Kotkin, A. S.; Kochergin, V. K.; Manzhos, R. A.; Krivenko, A. G. Effect of graphene surface functionalization on the oxygen reduction reaction in alkaline media. Mendeleev Communications 2020, 30, 472–473. doi:10.1016/j.mencom.2020.07.021
- González-Hernández, M.; Antolini, E.; Perez, J. CO Tolerance and Stability of Graphene and N-Doped Graphene Supported Pt Anode Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells. Catalysts 2020, 10, 597. doi:10.3390/catal10060597