Supporting Information
Different types of electrospun material based gas sensors. Sensing performance of electrospun pure MOx nanofibers categorized based on the analyte gas. Sensing performance of electrospun metal-doped MOx nanofibers categorized based on the analyte gas. Sensing performance of electrospun MOx–MOx nanofibers categorized based on the analyte gas.
| Supporting Information File 1: Summary of electrospun materials and their gas sensing performance. | ||
| Format: PDF | Size: 480.2 KB | Download |
Cite the Following Article
Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials
Muhammad Imran, Nunzio Motta and Mahnaz Shafiei
Beilstein J. Nanotechnol. 2018, 9, 2128–2170.
https://doi.org/10.3762/bjnano.9.202
How to Cite
Imran, M.; Motta, N.; Shafiei, M. Beilstein J. Nanotechnol. 2018, 9, 2128–2170. doi:10.3762/bjnano.9.202
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 753.0 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Rispandi; Simanjuntak, M. S.; Chu, C.-S. Fabrication of an Optical Sensor Based on Eosin-Y-Doped Electrospun Fibers for Ammonia Detection via Wavelength Shifts. Nanomaterials (Basel, Switzerland) 2025, 15, 273. doi:10.3390/nano15040273
- Lang, K.; Liu, T.; Padilla, D. J.; Nelson, M.; Landorf, C. W.; Patel, R. J.; Ballentine, M. L.; Kennedy, A. J.; Shih, W.-S.; Scotch, A.; Zhu, J. Nanofibers enabled advanced gas sensors: A review. Advanced Sensor and Energy Materials 2024, 3, 100093. doi:10.1016/j.asems.2024.100093
- Humberg, N.; Grönwoldt, L.; Sokolowski, M. Directed growth of quinacridone chains on the vicinal Ag(35 1 1) surface. Beilstein journal of nanotechnology 2024, 15, 556–568. doi:10.3762/bjnano.15.48
- Khomarloo, N.; Mohsenzadeh, E.; Gidik, H.; Bagherzadeh, R.; Latifi, M. Overall perspective of electrospun semiconductor metal oxides as high-performance gas sensor materials for NOx detection. RSC advances 2024, 14, 7806–7824. doi:10.1039/d3ra08119b
- Jung, M.-H.; Kwak, M.; Ahn, J.; Song, J.-Y.; Kang, H.; Jung, H.-T. Highly Sensitive and Selective Acetylene CuO/ZnO Heterostructure Sensors through Electrospinning at Lean O2 Concentration for Transformer Diagnosis. ACS sensors 2024, 9, 217–227. doi:10.1021/acssensors.3c01844
- Rodrigues, J.; Jain, S.; Shah, A.; Shimpi, N. Improving the parameters of metal oxide gas sensors through doping. Complex and Composite Metal Oxides for Gas, VOC and Humidity Sensors, Volume 2; Elsevier, 2024; pp 159–188. doi:10.1016/b978-0-323-95476-1.00010-1
- Pathak, D.; Sharma, A.; Sharma, R. K.; Nunzi, J.; Mahajan, A.; Sharma, D. P. Electrospun Polymer Nanofibers for Technology Applications: A Short Review. Current Materials Science 2023, 16, 376–399. doi:10.2174/2666145416666230104104150
- Simanjuntak, M. S.; Chu, C. S.; Rispandi, R.; Putro, D. Eosin-Y containing electrospun fibers for optical ammonia sensing based on wavelength shift. Journal of Physics: Conference Series 2023, 2631, 12020–012020. doi:10.1088/1742-6596/2631/1/012020
- Zhang, S.; Zhang, B.; Li, W.; Dong, Y.; Ni, Y.; Yu, P.; Liang, J.; Kim, N.-Y.; Wang, J. Electrospun copper-doped tungsten oxide nanowires for triethylamine gas sensing. Vacuum 2023, 215, 112377. doi:10.1016/j.vacuum.2023.112377
- Lalwani, S. K.; Debnath, A.; Gupta, V. k.; Sunny. On optimization of electrospun SnO2-ZnO nanofibers for low concentration ethanol sensing. Journal of Materials Science: Materials in Electronics 2023, 34. doi:10.1007/s10854-023-11092-4
- Phuoc, P. H.; Viet, N. N.; Chien, N. V.; Van Hoang, N.; Hung, C. M.; Hoa, N. D.; Van Duy, N.; Hong, H. S.; Trung, D. D.; Van Hieu, N. Comparative study of CuO/Co3O4 external and CuO-Co3O4 internal heterojunctions: Do these factors always enhance gas-sensing performance?. Sensors and Actuators B: Chemical 2023, 384, 133620. doi:10.1016/j.snb.2023.133620
- Doust Mohammadi, M.; Louis, H.; Chukwu, U. G.; Bhowmick, S.; Rasaki, M. E.; Biskos, G. Gas-Phase Interaction of CO, CO2, H2S, NH3, NO, NO2, and SO2 with Zn12O12 and Zn24 Atomic Clusters. ACS omega 2023, 8, 20621–20633. doi:10.1021/acsomega.3c01177
- Wang, H.; Xiong, R.; Cui, Z.; Wan, J.; Sa, B.; Wu, X.; Song, W.; Wang, X.; Zeng, D. Ultrasensitive Detection for Lithium-Ion Battery Electrolyte Leakage by Rare-Earth Nd-Doped SnO2 Nanofibers. ACS sensors 2023, 8, 1700–1709. doi:10.1021/acssensors.2c02862
- Wang, Z.; Fan, L.; Li, R.; Xu, Y.; Fu, Q. Preparation of polymer composites with high thermal conductivity by constructing a "double thermal conductive network" via electrostatic spinning. Composites Communications 2022, 36, 101371. doi:10.1016/j.coco.2022.101371
- Platonov, V.; Nasriddinov, A.; Rumyantseva, M. Electrospun ZnO/Pd Nanofibers as Extremely Sensitive Material for Hydrogen Detection in Oxygen Free Gas Phase. Polymers 2022, 14, 3481. doi:10.3390/polym14173481
- Xu, S.; Wang, J.; Lin, H.; Li, R.; Cheng, Y.; Sang, S.; Zhuo, K. ZnO/NiO nanofibers prepared by electrostatic spinning for rapid ammonia detection at room temperature. Electronic Materials Letters 2022, 18, 568–577. doi:10.1007/s13391-022-00362-8
- Sonwane, N. D.; Kondawar, S. S.; Gayakwad, P. V.; Kondawar, S. B. Application of Electrospun Polyaniline (PANI) Based Composites Nanofibers for Sensing and Detection. Electrospun Nanofibers; Springer International Publishing, 2022; pp 491–517. doi:10.1007/978-3-030-99958-2_18
- Hontañón, E.; Vallejos, S. One-Dimensional Metal Oxide Nanostructures for Chemical Sensors. 21st Century Nanostructured Materials - Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture; IntechOpen, 2022. doi:10.5772/intechopen.101749
- Dalfen, I.; Borisov, S. M. Porous matrix materials in optical sensing of gaseous oxygen. Analytical and bioanalytical chemistry 2022, 414, 4311–4330. doi:10.1007/s00216-022-04014-6
- Gebrehiyot, S.; Madiajagan, M.; Pattanaik, B.; Balamurugan, E.; Selvakanmani, S.; Vijayarangam, S. High Sensitive IoT Nanotechnology Sensors for Improved Data Acquisition and Processing. In 2022 International Conference on Electronics and Renewable Systems (ICEARS), IEEE, 2022; pp 617–621. doi:10.1109/icears53579.2022.9752333