Droplet-based synthesis of homogeneous magnetic iron oxide nanoparticles

Christian D. Ahrberg, Ji Wook Choi and Bong Geun Chung
Beilstein J. Nanotechnol. 2018, 9, 2413–2420. https://doi.org/10.3762/bjnano.9.226

Supporting Information

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 250.0 KB Download
Supporting Information File 2: Video showing droplet formation and mixing inside of the droplets.
Movie showing the droplet generation at an oil flow rate of 10 µL/min, and a flow rate of 10 µL/min from each capillary. A solution of iron(III) chloride was used from one capillary and of potassium thiocyanate from the other capillary. Upon mixing of the two solutions are red complex was immediately formed. It can be seen that both capillaries feed into the same droplets. After adequate mixing the absorption of the droplets was 43.5 ± 0.19 (arbitrary units).
Format: AVI Size: 1.8 MB Download

Cite the Following Article

Droplet-based synthesis of homogeneous magnetic iron oxide nanoparticles
Christian D. Ahrberg, Ji Wook Choi and Bong Geun Chung
Beilstein J. Nanotechnol. 2018, 9, 2413–2420. https://doi.org/10.3762/bjnano.9.226

How to Cite

Ahrberg, C. D.; Choi, J. W.; Chung, B. G. Beilstein J. Nanotechnol. 2018, 9, 2413–2420. doi:10.3762/bjnano.9.226

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 876.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Amin, M. O.; D'Cruz, B.; Al-Hetlani, E. Continuous synthesis of BaFe2O4 and BaFe12O19 nanoparticles in a droplet microreactor for efficient detection of antihistamine drugs in oral fluid using surface-assisted laser desorption/ionization mass spectrometry. The Analyst 2023, 148, 4489–4503. doi:10.1039/d3an01081c
  • Kafali, M.; Şahinoğlu, O. B.; Tufan, Y.; Orsel, Z. C.; Aygun, E.; Alyuz, B.; Saritas, E. U.; Erdem, E. Y.; Ercan, B. Antibacterial properties and osteoblast interactions of microfluidically synthesized chitosan - SPION composite nanoparticles. Journal of biomedical materials research. Part A 2023, 111, 1662–1677. doi:10.1002/jbm.a.37575
  • Besenhard, M. O.; Pal, S.; Gkogkos, G.; Gavriilidis, A. Non-fouling flow reactors for nanomaterial synthesis. Reaction Chemistry & Engineering 2023, 8, 955–977. doi:10.1039/d2re00412g
  • Kartashov, O. O.; Chapek, S. V.; Polyanichenko, D. S.; Belyavsky, G. I.; Alexandrov, A. A.; Butakova, M. A.; Soldatov, A. V. Online Microfluidic Droplets Characterization Using Microscope Data Intelligent Analysis. Big Data and Cognitive Computing 2023, 7, 7. doi:10.3390/bdcc7010007
  • Benković, M.; Valinger, D.; Jurina, T.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Biocatalysis as a Green Approach for Synthesis of Iron Nanoparticles—Batch and Microflow Process Comparison. Catalysts 2023, 13, 112. doi:10.3390/catal13010112
  • Orza, A.; Li, Y.; Yang, L.; Wang, Y.; Ilie, I. R. P.; Fatemi, F.; Mao, H. Iron oxide nanoparticles: Magnetic and biological properties. Encyclopedia of Nanomaterials; Elsevier, 2023; pp 411–431. doi:10.1016/b978-0-12-822425-0.00113-5
  • Sood, A.; Kumar, A.; Gupta, V. K.; Kim, C. M.; Han, S. S. Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfluidic Chips: State-of-the-Art and Future Prospects. ACS biomaterials science & engineering 2022, 9, 62–84. doi:10.1021/acsbiomaterials.2c01080
  • Besenhard, M. O.; Pal, S.; Storozhuk, L.; Dawes, S.; Thanh, N. T. K.; Norfolk, L.; Staniland, S.; Gavriilidis, A. A versatile non-fouling multi-step flow reactor platform: demonstration for partial oxidation synthesis of iron oxide nanoparticles. Lab on a chip 2022, 23, 115–124. doi:10.1039/d2lc00892k
  • Eom, Y.; Lim, B.; Kim, K.; Jeon, T.; Jeon, C.; Oh, S.; Kim, H.; Das, P. T.; Torati, S. R.; Kim, C. In-line monitoring of magnetic nanoparticles synthesis using reactor integrated on-chip magnetometer. Journal of Science: Advanced Materials and Devices 2022, 7, 100490. doi:10.1016/j.jsamd.2022.100490
  • Ling, F. W. M.; Abdulbari, H. A.; Chin, S. Y. Heterogeneous Microfluidic Reactors: A Review and an Insight of Enzymatic Reactions. ChemBioEng Reviews 2022, 9, 265–285. doi:10.1002/cben.202100058
  • Bertuit, E.; Neveu, S.; Abou-Hassan, A. High Temperature Continuous Flow Syntheses of Iron Oxide Nanoflowers Using the Polyol Route in a Multi-Parametric Millifluidic Device. Nanomaterials (Basel, Switzerland) 2021, 12, 119. doi:10.3390/nano12010119
  • Zardi, P.; Carofiglio, T.; Maggini, M. Mild Microfluidic Approaches to Oxide Nanoparticles Synthesis. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 28, e202103132. doi:10.1002/chem.202103132
  • Wang, L.; Liu, Z.; Wang, X.; Yan, Y. Investigation on the droplet evaporation process on local heated substrates with different wettability. Heat and Mass Transfer 2020, 1–13. doi:10.1007/s00231-020-03005-6
  • James, M.; Revia, R. A.; Stephen, Z. R.; Zhang, M. Microfluidic Synthesis of Iron Oxide Nanoparticles. Nanomaterials (Basel, Switzerland) 2020, 10, 2113. doi:10.3390/nano10112113
  • Asimakidou, T.; Makridis, A.; Veintemillas-Verdaguer, S.; del Puerto Morales, M.; Kellartzis, I.; Mitrakas, M.; Vourlias, G.; Angelakeris, M.; Simeonidis, K. Continuous production of magnetic iron oxide nanocrystals by oxidative precipitation. Chemical Engineering Journal 2020, 393, 124593. doi:10.1016/j.cej.2020.124593
  • Zhang, T.-Y.; Xu, Q.; Huang, T.; Ling, D.; Gao, J.-Q. New Insights into Biocompatible Iron Oxide Nanoparticles: A Potential Booster of Gene Delivery to Stem Cells. Small (Weinheim an der Bergstrasse, Germany) 2020, 16, 2001588. doi:10.1002/smll.202001588
  • Kye, H. G.; Ahrberg, C. D.; Park, B. S.; Lee, J. M.; Chung, B. G. Separation, Purification, and Detection of cfDNA in a Microfluidic Device. BioChip Journal 2020, 14, 195–203. doi:10.1007/s13206-020-4208-1
  • Kašpar, O.; Koyuncu, A. H.; Hubatová-Vacková, A.; Balouch, M.; Tokárová, V. Influence of channel height on mixing efficiency and synthesis of iron oxide nanoparticles using droplet-based microfluidics. RSC advances 2020, 10, 15179–15189. doi:10.1039/d0ra02470h
  • Ahrberg, C. D.; Choi, J. W.; Chung, B. G. Automated droplet reactor for the synthesis of iron oxide/gold core-shell nanoparticles. Scientific reports 2020, 10, 1737. doi:10.1038/s41598-020-58580-9
  • Roberts, E. J.; Karadaghi, L. R.; Wang, L.; Malmstadt, N.; Brutchey, R. L. Continuous Flow Methods of Fabricating Catalytically Active Metal Nanoparticles. ACS applied materials & interfaces 2019, 11, 27479–27502. doi:10.1021/acsami.9b07268
Other Beilstein-Institut Open Science Activities