Effect of electrospinning process variables on the size of polymer fibers and bead-on-string structures established with a 23 factorial design

Paulina Korycka, Adam Mirek, Katarzyna Kramek-Romanowska, Marcin Grzeczkowicz and Dorota Lewińska
Beilstein J. Nanotechnol. 2018, 9, 2466–2478. https://doi.org/10.3762/bjnano.9.231

Cite the Following Article

Effect of electrospinning process variables on the size of polymer fibers and bead-on-string structures established with a 23 factorial design
Paulina Korycka, Adam Mirek, Katarzyna Kramek-Romanowska, Marcin Grzeczkowicz and Dorota Lewińska
Beilstein J. Nanotechnol. 2018, 9, 2466–2478. https://doi.org/10.3762/bjnano.9.231

How to Cite

Korycka, P.; Mirek, A.; Kramek-Romanowska, K.; Grzeczkowicz, M.; Lewińska, D. Beilstein J. Nanotechnol. 2018, 9, 2466–2478. doi:10.3762/bjnano.9.231

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 747.9 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Gürtler, A.-L.; Linseisen, I.; Grohganz, H.; Heinz, A. Coaxial electrospinning of polycaprolactone – A design of experiments approach. European Polymer Journal 2024, 208, 112886. doi:10.1016/j.eurpolymj.2024.112886
  • Anaya-Mancipe, J. M.; Figueirdo, A. C.; Rabello, L. G.; Dias, M. L.; Thiré, R. M. S. M. Evaluation of the polycaprolactone (PCL) hydrolytic degradation in acid solvent and its influence on the electrospinning process. Research Square Platform LLC 2024. doi:10.21203/rs.3.rs-3866679/v2
  • Anaya-Mancipe, J. M.; Figueirdo, A. C.; Rabello, L. G.; Dias, M. L.; Thiré, R. M. S. M. Evaluation of the polycaprolactone (PCL) hydrolytic degradation in acid solvent and its influence on the electrospinning process. Research Square Platform LLC 2024. doi:10.21203/rs.3.rs-3866679/v1
  • Essalhi, M.; Khayet, M.; Tavajohi, N. Nanofiber membranes. Polymeric Membrane Formation by Phase Inversion; Elsevier, 2024; pp 199–224. doi:10.1016/b978-0-323-95628-4.00011-2
  • Zhao, M.; Hui, L.; Gao, Y.; Yang, Q.; Cheng, Y.; Hu, Y. Electrospun PVDF-based cellulose stearoyl ester nanocomposites for effective separation of water-in-oil emulsions. Industrial Crops and Products 2024, 210, 118140. doi:10.1016/j.indcrop.2024.118140
  • Chen, Z.; Guan, M.; Bian, Y.; Yin, X. Multifunctional Electrospun Nanofibers for Biosensing and Biomedical Engineering Applications. Biosensors 2023, 14, 13. doi:10.3390/bios14010013
  • Zhang, L.; Yang, S.; Wang, Q.; Jin, D. Three-Dimensional Structure and Independent Control of Micro/Nanorobot Swarms. Springer Tracts in Electrical and Electronics Engineering; Springer Nature Singapore, 2023; pp 127–162. doi:10.1007/978-981-99-3036-4_5
  • Kuru, F.; Coban, M. B.; Erkarslan, U.; Donmez, A.; Oylumluoglu, G.; Aygun, M.; Kara Subasat, H. Improved photoluminescence properties of one-dimensional (1D) composite fibers of Ho@PVP and Yb@PVP prepared by electrospinning. Polyhedron 2023, 242, 116492. doi:10.1016/j.poly.2023.116492
  • Emam, M. H.; Elezaby, R. S.; Swidan, S. A.; Loutfy, S. A.; Hathout, R. M. Cerium Oxide Nanoparticles/Polyacrylonitrile Nanofibers as Impervious Barrier against Viral Infections. Pharmaceutics 2023, 15, 1494. doi:10.3390/pharmaceutics15051494
  • Paczkowska-Walendowska, M.; Miklaszewski, A.; Cielecka-Piontek, J. Improving Solubility and Permeability of Hesperidin through Electrospun Orange-Peel-Extract-Loaded Nanofibers. International journal of molecular sciences 2023, 24, 7963. doi:10.3390/ijms24097963
  • Batool, R.; Mudassir, J.; Khan, M. A.; Zafar, S.; Rana, S. J.; Abbas, N.; Hussain, A.; Arshad, M. S.; Muhammad, S. Fabrication and Characterization of Celecoxib-Loaded Chitosan/Guar Gum-Based Hydrogel Beads. Pharmaceuticals (Basel, Switzerland) 2023, 16, 554. doi:10.3390/ph16040554
  • Mirek, A.; Grzeczkowicz, M.; Belaid, H.; Bartkowiak, A.; Barranger, F.; Abid, M.; Wasyłeczko, M.; Pogorielov, M.; Bechelany, M.; Lewińska, D. Electrospun UV-cross-linked polyvinylpyrrolidone fibers modified with polycaprolactone/polyethersulfone microspheres for drug delivery. Biomaterials advances 2023, 147, 213330. doi:10.1016/j.bioadv.2023.213330
  • Li, J.; Yin, J.; Ramakrishna, S.; Ji, D. Smart Mask as Wearable for Post-Pandemic Personal Healthcare. Biosensors 2023, 13, 205. doi:10.3390/bios13020205
  • Morehouse, A.; Ireland, K. C.; Saha, G. C. An Investigation into the Effects of Electric Field Uniformity on Electrospun TPU Fiber Nano-Scale Morphology. Micromachines 2023, 14, 199. doi:10.3390/mi14010199
  • Chen, W.; Zhao, P.; Yang, Y.; Yu, D.-G. Electrospun Beads-on-the-String Nanoproducts: Preparation and Drug Delivery Application. Current drug delivery 2023, 20, 1224–1240. doi:10.2174/1567201819666220525095844
  • Canales, D. A.; Piñones, N.; Saavedra, M.; Loyo, C.; Palza, H.; Peponi, L.; Leonés, A.; Baier, R. V.; Boccaccini, A. R.; Grünelwald, A.; Zapata, P. A. Fabrication and assessment of bifunctional electrospun poly(l-lactic acid) scaffolds with bioglass and zinc oxide nanoparticles for bone tissue engineering. International journal of biological macromolecules 2022, 228, 78–88. doi:10.1016/j.ijbiomac.2022.12.195
  • Kamali, H.; Farzadnia, P.; Movaffagh, J.; Abbaspour, M. Optimization of curcumin nanofibers as fast dissolving oral films prepared by emulsion electrospinning via central composite design. Journal of Drug Delivery Science and Technology 2022, 75, 103714. doi:10.1016/j.jddst.2022.103714
  • Jarak, I.; Silva, I.; Domingues, C.; Santos, A. I.; Veiga, F.; Figueiras, A. Nanofiber Carriers of Therapeutic Load: Current Trends. International journal of molecular sciences 2022, 23, 8581. doi:10.3390/ijms23158581
  • Opálková Šišková, A.; Mosnáčková, K.; Musioł, M.; Opálek, A.; Bučková, M.; Rychter, P.; Eckstein Andicsová, A. Electrospun Nisin-Loaded Poly(ε-caprolactone)-Based Active Food Packaging. Materials (Basel, Switzerland) 2022, 15, 4540. doi:10.3390/ma15134540
  • İbili, H.; Daşdemir, M. AgCl-TiO2/dendrimer-based nanoparticles for superhydrophobic and antibacterial multifunctional textiles. The Journal of The Textile Institute 2022, 114, 861–873. doi:10.1080/00405000.2022.2089836
Other Beilstein-Institut Open Science Activities