Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition

Lukas Keller and Michael Huth
Beilstein J. Nanotechnol. 2018, 9, 2581–2598.

Supporting Information

Explains the input and output files of the pattern generator program in detail (see also Figure 1). The parameters of the settings file setf are defined. The structure of the geometry file geof and the generated pattern file are shown. The usage of the illustration file and the description file is demonstrated.

Supporting Information File 1: Supporting information.
Format: PDF Size: 192.4 KB Download

Cite the Following Article

Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition
Lukas Keller and Michael Huth
Beilstein J. Nanotechnol. 2018, 9, 2581–2598.

How to Cite

Keller, L.; Huth, M. Beilstein J. Nanotechnol. 2018, 9, 2581–2598. doi:10.3762/bjnano.9.240

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 545.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Volkov, O. M.; Pylypovskyi, O. V.; Porrati, F.; Kronast, F.; Fernandez-Roldan, J. A.; Kákay, A.; Kuprava, A.; Barth, S.; Rybakov, F. N.; Eriksson, O.; Lamb-Camarena, S.; Makushko, P.; Mawass, M.-A.; Shakeel, S.; Dobrovolskiy, O. V.; Huth, M.; Makarov, D. Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes. Nature communications 2024, 15, 2193. doi:10.1038/s41467-024-46403-8
  • Córdoba, R. Additive nanofabrication using focused ion and electron beams. Encyclopedia of Condensed Matter Physics; Elsevier, 2024; pp 448–464. doi:10.1016/b978-0-323-90800-9.00035-4
  • Kiefer, P.; Hahn, V.; Kalt, S.; Sun, Q.; Eggeler, Y. M.; Wegener, M. A multi-photon (7 × 7)-focus 3D laser printer based on a 3D-printed diffractive optical element and a 3D-printed multi-lens array. Light: Advanced Manufacturing 2024, 4, 1. doi:10.37188/lam.2024.003
  • Makarov, D.; Pylypovskyi, O. V. Magnetic nanostructures. Encyclopedia of Condensed Matter Physics; Elsevier, 2024; pp 112–131. doi:10.1016/b978-0-323-90800-9.00048-2
  • Balčas, G.; Malinauskas, M.; Farsari, M.; Juodkazis, S. Fabrication of Glass‐Ceramic 3D Micro‐Optics by Combining Laser Lithography and Calcination. Advanced Functional Materials 2023, 33. doi:10.1002/adfm.202215230
  • Kuprava, A.; Huth, M. Fast and Efficient Simulation of the FEBID Process with Thermal Effects. Nanomaterials (Basel, Switzerland) 2023, 13, 858. doi:10.3390/nano13050858
  • Dong, Z.; Levkin, P. A. 3D Microprinting of Super‐Repellent Microstructures: Recent Developments, Challenges, and Opportunities. Advanced Functional Materials 2023, 33. doi:10.1002/adfm.202213916
  • Fowlkes, J. D.; Winkler, R.; Rack, P. D.; Plank, H. 3D Nanoprinting Replication Enhancement Using a Simulation-Informed Analytical Model for Electron Beam Exposure Dose Compensation. ACS omega 2023, 8, 3148–3175. doi:10.1021/acsomega.2c06596
  • Hsiao, K.; Lee, B. J.; Samuelsen, T.; Lipkowitz, G.; Kronenfeld, J. M.; Ilyn, D.; Shih, A.; Dulay, M. T.; Tate, L.; Shaqfeh, E. S. G.; DeSimone, J. M. Single-digit-micrometer-resolution continuous liquid interface production. Science advances 2022, 8, eabq2846. doi:10.1126/sciadv.abq2846
  • Dobrovolskiy, O. V.; Pylypovskyi, O. V.; Skoric, L.; Fernández-Pacheco, A.; Van Den Berg, A.; Ladak, S.; Huth, M. Complex-Shaped 3D Nanoarchitectures for Magnetism and Superconductivity. Topics in Applied Physics; Springer International Publishing, 2022; pp 215–268. doi:10.1007/978-3-031-09086-8_5
  • Fang, C.; Chai, Q.; Chen, Y.; Xing, Y.; Zhou, Z. Pattern generation method and prediction model of nanohelices fabricated by focused ion beam induced deposition. Precision Engineering 2022, 77, 241–250. doi:10.1016/j.precisioneng.2022.06.002
  • Cheenikundil, R.; Bauer, J.; Goharyan, M.; d'Aquino, M.; Hertel, R. High-frequency modes in a magnetic buckyball nanoarchitecture. APL Materials 2022, 10. doi:10.1063/5.0097695
  • Lasseter, J.; Rack, P. D.; Randolph, S. J. Selected Area Deposition of PtCx Nanostructures: Implications for Functional Coatings of 3D Nanoarchitectures. ACS Applied Nano Materials 2022, 5, 10890–10899. doi:10.1021/acsanm.2c02182
  • Makarov, D. Glassy net of nanomagnets. Nature Physics 2022, 18, 488–489. doi:10.1038/s41567-022-01588-x
  • Utke, I.; Swiderek, P.; Höflich, K.; Madajska, K.; Jurczyk, J.; Martinović, P.; Szymańska, I. Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coordination Chemistry Reviews 2022, 458, 213851. doi:10.1016/j.ccr.2021.213851
  • Kundrata, I.; Barr, M. K. S.; Tymek, S.; Döhler, D.; Hudec, B.; Brüner, P.; Vanko, G.; Precner, M.; Yokosawa, T.; Spiecker, E.; Plakhotnyuk, M.; Fröhlich, K.; Bachmann, J. Additive Manufacturing in Atomic Layer Processing Mode. Small methods 2022, 6, e2101546. doi:10.1002/smtd.202101546
  • Fang, C.; Xing, Y. Investigation of the Shadow Effect in Focused Ion Beam Induced Deposition. Nanomaterials (Basel, Switzerland) 2022, 12, 905. doi:10.3390/nano12060905
  • Huth, M.; Porrati, F.; Barth, S. Living up to its potential—Direct-write nanofabrication with focused electron beams. Journal of Applied Physics 2021, 130, 170901. doi:10.1063/5.0064764
  • Makarov, D.; Volkov, O. M.; Kákay, A.; Pylypovskyi, O. V.; Budinská, B.; Dobrovolskiy, O. V. New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures. Advanced materials (Deerfield Beach, Fla.) 2021, 34, 2101758. doi:10.1002/adma.202101758
  • Winkler, R.; Fowlkes, J. D.; Rack, P. D.; Kothleitner, G.; Plank, H. Shape evolution and growth mechanisms of 3D-printed nanowires. Additive Manufacturing 2021, 46, 102076. doi:10.1016/j.addma.2021.102076
Other Beilstein-Institut Open Science Activities