Cite the Following Article
Silicene, germanene and other group IV 2D materials
Patrick Vogt
Beilstein J. Nanotechnol. 2018, 9, 2665–2667.
https://doi.org/10.3762/bjnano.9.248
How to Cite
Vogt, P. Beilstein J. Nanotechnol. 2018, 9, 2665–2667. doi:10.3762/bjnano.9.248
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 128.3 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Gherbi, K.; Kadri, M.; Belkhir, H.; Zanat, K. Anisotropic and tunable properties of hydrogen/halogen-terminated germanene nanoribbons for advanced optoelectronics. Physics Open 2025, 24, 100280. doi:10.1016/j.physo.2025.100280
- Tang, X.; Huang, Z.; Liu, W.; Xu, W.; Chen, H.; Zhang, L.; Xie, Z.; Zhang, H. Unveiling the properties, structure, and preparation of monoelemental main group Xenes for enhanced nonlinear optics applications. Journal of Materials Chemistry C 2025, 13, 12098–12126. doi:10.1039/d5tc01251a
- Allahverdikhani, T.; Barvestani, J. Study of halomethane adsorption on binary antimonene-phosphorene nanoribbons under an electric field: a first-principles approach with DFT analysis. Physica Scripta 2025, 100, 65908. doi:10.1088/1402-4896/add18e
- Yadav, B.; Srivastava, P.; Sharma, V. Investigation of Electronic and Transport Properties of Zigzag Aluminium Nitride Nanoribbon for Magnetoresistive Devices using Selective Edge Chlorination. Advanced Theory and Simulations 2025, 8. doi:10.1002/adts.202401276
- Allahverdikhani, T.; Barvestani, J.; Meshginqalam, B. Structural, electronic, and magnetic properties of binary zigzag antimonene-phosphorene nanoribbons and their mole fractions with different edge passivation: A DFT investigation. Materials Today Communications 2024, 41, 110879. doi:10.1016/j.mtcomm.2024.110879
- Shreya; Phogat, P.; Jha, R.; Singh, S. Emerging advances and future prospects of two dimensional nanomaterials based solar cells. Journal of Alloys and Compounds 2024, 1001, 175063. doi:10.1016/j.jallcom.2024.175063
- Nemu, A.; Jaiswal, N. K. Tailoring the structural, electronic and transport characteristics of zigzag BP nanoribbons with edge passivations. Materials Science in Semiconductor Processing 2024, 175, 108257. doi:10.1016/j.mssp.2024.108257
- EKİCİ, H. Production Methods and Energy Applications of Borophene. Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi 2023, 5, 126–142. doi:10.47898/ijeased.1232358
- Nemu, A.; Jaiswal, N. K. DFT based investigations for the structural and electronic properties of coved zigzag BP nanoribbons. Journal of molecular graphics & modelling 2023, 121, 108453. doi:10.1016/j.jmgm.2023.108453
- Alhajri, F.; Fadlallah, M. M.; Alkhaldi, A.; Maarouf, A. A. Hybrid MXene-Graphene/Hexagonal Boron Nitride Structures: Electronic and Molecular Adsorption Properties. Nanomaterials (Basel, Switzerland) 2022, 12, 2739. doi:10.3390/nano12162739
- Venkateshalu, S.; Subashini, G.; Bhardwaj, P.; Jacob, G.; Sellappan, R.; Raghavan, V.; Jain, S.; Pandiaraj, S.; Natarajan, V.; Al Alwan, B. A. M.; Al Mesfer, M. K. M.; Alodhayb, A.; Khalid, M.; Grace, A. N. Phosphorene, antimonene, silicene and siloxene based novel 2D electrode materials for supercapacitors-A brief review. Journal of Energy Storage 2022, 48, 104027. doi:10.1016/j.est.2022.104027
- Bouguerra, K.; Aksas, A.; Gueddim, A.; Zerroug, S.; Bouarissa, N. Study on graphene-like monolayer ZnS1−xOx: structural and optoelectronic properties. Theoretical Chemistry Accounts 2021, 140. doi:10.1007/s00214-021-02858-2
- Macewicz, L.; Pyrchla, K.; Bogdanowicz, R.; Sumanasekera, G.; Jasinski, J. B. Chemical Vapor Transport Route toward Black Phosphorus Nanobelts and Nanoribbons. The journal of physical chemistry letters 2021, 12, 8347–8354. doi:10.1021/acs.jpclett.1c02064
- Chabi, S.; Guler, Z.; Brearley, A. J.; Benavidez, A.; Luk, T. S. The Creation of True Two-Dimensional Silicon Carbide. Nanomaterials (Basel, Switzerland) 2021, 11, 1799. doi:10.3390/nano11071799
- Chabi, S.; Kadel, K. Two-Dimensional Silicon Carbide: Emerging Direct Band Gap Semiconductor. Nanomaterials (Basel, Switzerland) 2020, 10, 2226. doi:10.3390/nano10112226
- Ma, B.; Martín, C.; Kurapati, R.; Bianco, A. Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials. Chemical Society reviews 2020, 49, 6224–6247. doi:10.1039/c9cs00822e
- Cui, H.; Guo, Y.; Ma, W.; Zhou, Z. 2 D Materials for Electrochemical Energy Storage: Design, Preparation, and Application. ChemSusChem 2020, 13, 1155–1171. doi:10.1002/cssc.201903095
- Tian, X.-H.; Zhang, J.-M. The electronic, magnetic and optical properties of single-layer CrS2 with vacancy defects. Journal of Magnetism and Magnetic Materials 2019, 487, 165300. doi:10.1016/j.jmmm.2019.165300
- Halder, C.; Ferdous, N.; Islam, A. S. M. J.; Howlader, A. H. Vacancy Induced Structural and Electronic Properties of Two Dimensional Stanene: A First Principles Investigation. In 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), IEEE, 2019; pp 431–434. doi:10.1109/icaee48663.2019.8975517
- Guo, Z.; Ouyang, J.; Kim, N. Y.; Shi, J.; Ji, X. Emerging Two-Dimensional Nanomaterials for Cancer Therapy. Chemphyschem : a European journal of chemical physics and physical chemistry 2019, 20, 2417–2433. doi:10.1002/cphc.201900551