Supporting Information
| Supporting Information File 1: Additional experimental data. | ||
| Format: PDF | Size: 5.0 MB | Download |
Cite the Following Article
Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS
Sherif Okeil and Jörg J. Schneider
Beilstein J. Nanotechnol. 2018, 9, 2813–2831.
https://doi.org/10.3762/bjnano.9.263
How to Cite
Okeil, S.; Schneider, J. J. Beilstein J. Nanotechnol. 2018, 9, 2813–2831. doi:10.3762/bjnano.9.263
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.4 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Segovia-Olvera, P.; Camacho-Lopez, S.; Fraijo-Rodas, A.; Esparza-Garcia, A.; Wurtz, G. Polarization-Controlled Low Spatial Frequency LIPSS (LSFL) Formation in Bismuth Films Modeled with Multiple Scattering of Surface Plasmon Polaritons (SPPs). Plasmonics 2025. doi:10.1007/s11468-025-03203-0
- Li, Z.; Lin, X.; Yu, Z.; Shi, G.; Zhou, W.; Cui, J.; Guo, S.; Wang, M. Transformer-Driven Ag@5/Ag–Cu@20/PSS SERS Biosensor for Early Diagnosis of Hepatobiliary Diseases. IEEE Sensors Journal 2025, 25, 23634–23644. doi:10.1109/jsen.2025.3569865
- Huyen, N. T.; Quynh Ngan, L. T.; Quynh Xuan, L. T.; Suong, T. A. S.; Thanh, C. T.; Van Tu, N.; Binh, P. T.; Van Tan, T.; Tuyen, N. V.; Cao, D. T.; Van Hai, P.; Hoa, V. X.; Van Chuc, N. Reduced graphene oxide-carbon nanotubes nanocomposites-decorated porous silver nanodendrites for highly efficient SERS sensing. Optical Materials 2025, 162, 116935. doi:10.1016/j.optmat.2025.116935
- Yuan, C.; Zhang, D.; Xu, P.; Gan, Y. Nanoporous Silver Films for Surface-Enhanced Raman Scattering-Based Sensing. ACS Applied Nano Materials 2024, 7, 16141–16153. doi:10.1021/acsanm.4c02026
- Ham, J.-H.; Park, J. S.; Oh, M.-K.; Kim, J. H. Reusable Wrinkled Nanoporous Silver Film Fabricated by Plasma Treatment for Surface-Enhanced Raman Scattering Applications. ACS omega 2023, 8, 47146–47152. doi:10.1021/acsomega.3c07167
- Zhang, Z.; Yang, S.; Zhao, R.; Chen, J.; Wang, S.; Choo, J.; Chen, L. Recyclable Surface-Enhanced Raman Scattering Substrate-Based Sensors for Various Applications. ACS Sustainable Chemistry & Engineering 2023, 11, 1278–1293. doi:10.1021/acssuschemeng.2c05291
- Krishchenko, I.; Kravchenko, S.; Kruglenko, I.; Manoilov, E.; Snopok, B. 3D Porous Plasmonic Nanoarchitectures for SERS-Based Chemical Sensing. In The 9th International Electronic Conference on Sensors and Applications, MDPI, 2022; 41. doi:10.3390/ecsa-9-13200
- Oh, J. H.; Woo, J. Y.; Jo, S.; Yang, H. M.; Han, C.-S. Surface morphology and transparency control of a metal/PDMS layered substrate by stretching. Surfaces and Interfaces 2022, 29, 101732. doi:10.1016/j.surfin.2022.101732
- Rao, V. K.; De Silva, K. K. H.; Yoshimura, M. Reversal and Control the Tip-Enhanced Raman Scattering Efficiency of Rough Plasmonic Probes Fabricated using UV-ozone and Hydrazine. Applied Surface Science 2022, 577, 151937. doi:10.1016/j.apsusc.2021.151937
- Lv, Y.; Lian, X.; Sun, H.; Wang, G.; Osaka, A. Abnormal Microstructure Evolution Behaviors of Annealed Ag-18.9 at% Co Alloy Film on Flexible Polyimide Substrates. Surfaces and Interfaces 2022, 28, 101614. doi:10.1016/j.surfin.2021.101614
- Ferodolin, I.; Awang, A.; Ghoshal, S. K.; Samavati, A.; Pien, C. F.; Dayou, J. Plasmonic effect of bimetallic TiO2/Al2O3 nanoparticles in tellurite glass for surface-enhanced Raman scattering applications. Journal of Luminescence 2022, 241, 118488. doi:10.1016/j.jlumin.2021.118488
- Koya, A. N. Plasmonic Nanoarchitectures for Single‐Molecule Explorations: An Overview. Advanced Photonics Research 2021, 3. doi:10.1002/adpr.202100325
- Santhosh, N. M.; Shvalya, V.; Modic, M.; Hojnik, N.; Zavašnik, J.; Olenik, J.; Košiček, M.; Filipič, G.; Abdulhalim, I.; Cvelbar, U. Label-Free Mycotoxin Raman Identification by High-Performing Plasmonic Vertical Carbon Nanostructures. Small (Weinheim an der Bergstrasse, Germany) 2021, 17, 2103677. doi:10.1002/smll.202103677
- Yoon, H.; Shin, S.; Kwon, S.-Y.; Cho, H.-M.; Kim, S.-G.; Hong, M. One-Step Etching Characteristics of ITO/Ag/ITO Multilayered Electrode in High-Density and High-Electron-Temperature Plasma. Materials (Basel, Switzerland) 2021, 14, 2025. doi:10.3390/ma14082025
- Koya, A. N.; Zhu, X.; Ohannesian, N.; Yanik, A. A.; Alabastri, A.; Zaccaria, R. P.; Krahne, R.; Shih, W.-C.; Garoli, D. Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS nano 2021, 15, 6038–6060. doi:10.1021/acsnano.0c10945
- Kukushkin, V. I.; Astrakhantseva, A. S.; Morozova, E. N. Influence of the Morphology of Metal Nanoparticles Deposited on Surfaces of Silicon Oxide on the Optical Properties of SERS Substrates. Bulletin of the Russian Academy of Sciences: Physics 2021, 85, 133–140. doi:10.3103/s1062873821020155
- Capaccio, A.; Sasso, A.; Tarallo, O.; Rusciano, G. Coral-like plasmonic probes for tip-enhanced Raman spectroscopy. Nanoscale 2020, 12, 24376–24384. doi:10.1039/d0nr05107a
- Pashchanka, M.; Okeil, S.; Schneider, J. J. Long-Range Hexagonal Pore Ordering as the Key to Controlling SERS Efficiency in Substrates Based on Porous Alumina. The Journal of Physical Chemistry C 2020, 124, 25931–25943. doi:10.1021/acs.jpcc.0c02761
- Abdollahi, S. N.; Martínez, E. O.; Kilchoer, C.; Kremer, G.; Jaouen, T.; Aebi, P.; Hellmann, T.; Mayer, T.; Gu, Y.; Wiesner, U.; Steiner, U.; Wilts, B. D.; Gunkel, I. Carbon-Assisted Stable Silver Nanostructures. Advanced Materials Interfaces 2020, 7, 2001227. doi:10.1002/admi.202001227
- Shvalya, V.; Filipič, G.; Zavašnik, J.; Abdulhalim, I.; Cvelbar, U. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Applied Physics Reviews 2020, 7, 031307. doi:10.1063/5.0015246