Cite the Following Article
Graphene-enhanced metal oxide gas sensors at room temperature: a review
Dongjin Sun, Yifan Luo, Marc Debliquy and Chao Zhang
Beilstein J. Nanotechnol. 2018, 9, 2832–2844.
https://doi.org/10.3762/bjnano.9.264
How to Cite
Sun, D.; Luo, Y.; Debliquy, M.; Zhang, C. Beilstein J. Nanotechnol. 2018, 9, 2832–2844. doi:10.3762/bjnano.9.264
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 828.9 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Kuo, T.-W.; Sino, P. A. L.; Villaos, R. A. B.; Hsu, Y.-C.; Peng, Y.-R.; Wu, S.-C.; Liao, Y.-H.; Hong, Y.-H.; Kuo, H.-C.; Chuang, F.-C.; Chueh, Y.-L. Copper(II) phthalocyanine-2D tin diselenide hybrid-layers-based gas sensors with selectivity enhancement on formaldehyde gas. Chemical Engineering Journal 2025, 524, 168911. doi:10.1016/j.cej.2025.168911
- Azami, M.; Pakpour, F.; Ghanbari, D. Graphene-based Nanocomposite Containing Au, Sb, and Si to Enhance the Sensitivity of Carbon-monoxide and Ammonia Gas Sensors. Springer Science and Business Media LLC 2025. doi:10.21203/rs.3.rs-7785076/v1
- Kumar, A.; Mazumder, J. T.; Joyen, K.; Favier, F.; Mirzaei, A.; Kim, J.-Y.; Kwoka, M.; Bechelany, M.; Jha, R. K.; Kumar, M.; Kim, H. W.; Kim, S. S. Defect engineering approaches for metal oxide semiconductor-based chemiresistive gas sensing. Coordination Chemistry Reviews 2025, 541, 216836. doi:10.1016/j.ccr.2025.216836
- Lee, J.; Kim, M.; Park, S.; Lee, J.; Chen, Q.; Kim, J.; Defferriere, T.; Park, H.; Jeon, S.; Kim, I.-D. Bandgap-Engineered Graphene Quantum Dot Photosensitizers for Tunable Light Spectrum-Activated NO2 Sensors. ACS nano 2025, 19, 32732–32743. doi:10.1021/acsnano.5c10578
- Park, J. Y.; Lee, J. W.; Cho, H.-B.; Myung, N. V.; Choa, Y.-H. IoT-Enabled capacitive ammonia sensor platform for real-time environmental monitoring at room temperature. Sensors and Actuators B: Chemical 2025, 447, 138831. doi:10.1016/j.snb.2025.138831
- Kim, C. H.; Kim, J. H.; Jeong, S.-Y.; Shin, B. S. Atomistic and data-driven modeling of laser-induced graphene formation on sustainable polymer substrates. Scientific reports 2025, 15, 31627. doi:10.1038/s41598-025-15945-2
- Drozdowska, K.; Smulko, J. Selective light-activation of sensing regions in hybrid Au-graphene-TiO2 chemiresistive gas sensor. Sensors and Actuators B: Chemical 2025, 437, 137764. doi:10.1016/j.snb.2025.137764
- Vardhan, V.; Biswas, S.; Tsetseris, L.; Ghosh, S.; Echresh, A.; Hellebust, S.; Huebner, R.; Georgiev, Y. M.; Holmes, J. D. Ammonia Sensing via Pseudo Molecular Doping in UV-Activated Ambipolar Silicon Nanowire Transistors. ACS applied materials & interfaces 2025, 17, 44686. doi:10.1021/acsami.5c08140
- Wei, S.; Li, Z.; Karawdeniya, B. I.; Chen, C.; Tan, H. H.; Jagadish, C.; Qiu, L.; Fu, L. III-V Compound Semiconductor Nanowire Arrays for Sensor Applications─A Review. ACS sensors 2025, 10, 5339–5362. doi:10.1021/acssensors.5c00526
- Khnykov, A. Y.; Vdovichenko, A. Y.; Chvalun, S. N. Nanostructured Materials for Gas Sensors. Nanobiotechnology Reports 2025, 20, 101–117. doi:10.1134/s2635167625600051
- Charrada, G.; Ajili, M.; Bernardini, S.; Aguir, K.; Kamoun, N. T. Dual-Functional Green Facile synthesis of graphene doped CuO-SnO2:F sprayed thin film as an efficient photocatalyst and ammonia gas sensor at low concentration. Ceramics International 2025, 51, 21326–21339. doi:10.1016/j.ceramint.2025.02.294
- Liu, L.; Zhao, J.; Li, S.; Liu, F.; Jin, Z.; Liu, J.; Du, W.; Wang, F.; Wang, Z.; Wu, L. Room temperature CO sensor based on Au-decorated ZnO nanosheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2025, 717, 136799. doi:10.1016/j.colsurfa.2025.136799
- Kwon, B.; Lee, J. H.; Jo, S. B.; Hwang, J.; Lee, D.; Cha, J.; Lim, S.; Suk, J. W.; Lee, W. H. Saturable intercalation doping enables scalable and selective graphene gas sensors on plastic. Chemical Engineering Journal 2025, 515, 163812. doi:10.1016/j.cej.2025.163812
- Kumar, S.; Bhowmik, B. Ternary Composite and Beyond for Gas Sensing: A Review. Journal of Electronic Materials 2025, 54, 6929–6959. doi:10.1007/s11664-025-12044-w
- Akhtar, M.; Shahzadi, S.; Arshad, M.; Akhtar, T.; Saeed Ashraf Janjua, M. R. Metal oxide-polymer hybrid composites: a comprehensive review on synthesis and multifunctional applications. RSC advances 2025, 15, 18173–18208. doi:10.1039/d5ra01821h
- Li, J.; Mo, X.; Zhu, C.; Yang, M. Optimized Pt Loaded Cerium Tungstate Electrochemical Sensor for Rapid Response and Recovery NO2 Detection. Advanced Sensor Research 2025, 4. doi:10.1002/adsr.202400192
- Bulemo, P. M.; Kim, D.-H.; Shin, H.; Cho, H.-J.; Koo, W.-T.; Choi, S.-J.; Park, C.; Ahn, J.; Güntner, A. T.; Penner, R. M.; Kim, I.-D. Selectivity in Chemiresistive Gas Sensors: Strategies and Challenges. Chemical reviews 2025, 125, 4111–4183. doi:10.1021/acs.chemrev.4c00592
- Sharma, R.; Kumar, H.; Saini, C.; Yadav, D.; Yadav, K.; Saloni; Minakshi; Kumar, A.; Rani, G. Revolutionizing material science: Enhanced functionalities through reduced graphene oxide/Al2O3/CuO/TiO2 nanocomposites. Journal of Molecular Structure 2025, 1323, 140763. doi:10.1016/j.molstruc.2024.140763
- Song, J.; Zhao, J.; Wu, M.; Hu, Y.; Chen, W. Greatly improved room-temperature CO-sensing capability of Pt–SnO2 composite nanoceramics prepared using solution reduction Pt-loading method. Journal of Materials Science: Materials in Electronics 2025, 36. doi:10.1007/s10854-025-14300-5
- Drozdowska, K.; Smulko, J. Selective Light-Activation of Sensing Regions in Hybrid Au-Graphene-Tio2 Chemoresistive Gas Sensor. Elsevier BV 2025. doi:10.2139/ssrn.5143359
Patents
- RADICE DINO. Sensore di gas chemoresistivo. IT 201900007229 A1, Nov 24, 2020.